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Networks: The Visual Language of Complexity

Blai Vidiella, Salva Duran-Nebreda and Sergi Valverde

Abstract Understanding the origins of complexity is a fundamental challenge with
implications for biological and technological systems. Network theory emerges as
a powerful tool to model complex systems. Networks are an intuitive framework to
represent inter-dependencies among many system components, facilitating the study
of both local and global properties. However, it is unclear whether we can define a uni-
versal theoretical framework for evolving networks. While basic growth mechanisms,
like preferential attachment, recapitulate common properties such as the power-law
degree distribution, they fall short in capturing other system-specific properties. Tin-
kering, on the other hand, has shown to be very successful in generating modular
or nested structures ‘for-free’, highlighting the role of internal, non-adaptive mecha-
nisms in the evolution of complexity. Different network extensions, like hypergraphs,
have been recently developed to integrate exogenous factors in evolutionary models,
as pairwise interactions are insufficient to capture environmentally-mediated species
associations. As we confront global societal and climatic challenges, the study of
network and hypergraphs provides valuable insights, emphasizing the importance of
scientific exploration in understanding and managing complexity.
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1 Introduction

Understanding complexity is a main scientific challenge [16]. This quest has been a
complex process in and of itself, motivated by both theoretical and practical reasons.
Consider two examples of using networks to comprehend complexity, one from biol-
ogy and one from technology. Bertrand Russell proposed in the 1930s that notations
play an important role in distilling abstract ideas into clearly intelligible forms, hence
aiding communication [124]. Almost 90 years later, the Synthetic Biology Open Lan-
guage (SBOL) [63] introduced a formal notation in modern biology, aspiring to be
an industrial standard for those engineering or simply conveying biological designs
(particularly genetic constructs and pathways) (see Figure 1a).

Prior to SBOL, computer scientists were seeking for a language that would allow
them to control the complexity of software. Alan Kay, a former math and biology
student and Xerox PARC computer scientist, recognized that the level of complexity
in software was only comparable to that of biology. Kay played a significant role
in the development of Smalltalk [55], a programming language that conceptualized
software as a network of code units, drawing inspiration from biological analogies
and the interactions between cells: “I thought of objects being like biological cells
and/or individual computers on a network, only able to communicate with messages.”

Smalltalk is a successful programming language, but neither it nor its contem-
porary descendants have been the ultimate solution to software development [106].
One of us participated in a video game project in 2002, where we used software
engineering techniques, including graphical notation (see Figure 1b). The large-scale
structure of our video game proved to be extremely complex and difficult to under-
stand, despite the talent of the software development team and ongoing attempts to
optimize, improve, and modularize the software architecture [107, 113] (see Figure
1c). Unwanted complexity is certainly not surprising to many software developers,
but neither is there a convincing explanation for it (or a strategy to prevent it). For
these reasons, we decided to launch an ongoing research project to investigate the
origins of software complexity from a scientific (not engineering) perspective [110].
This example also suggests that SBOL’s comparable initiatives may have a limited
impact in managing biological complexity (especially when dealing with large non-
orthogonal biological designs [22, 23]). But why are notation schemes insufficient?
What is missing?

An important requirement is the ability to capture the structure-dynamics rela-
tionship as well as the evolutionary component inherent in complex systems. The
crucial role of dynamics in complex systems is exemplified by social insect colonies,
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whose properties cannot be reduced to the agents building them [123]. Nest archi-
tecture emerges from the coordinated actions of many insects, which are, in turn,
channeled through the emerging 3-D network of galleries [75, 108]. Feed-backs are a
universal feature of the evolution of complexity, which can be a driver of adaptations
and innovations emerging at multiple scales [30]. Examples include not only social
insects [123, 88], but multicellularity [78, 19, 31, 89], human language [26] and many
others [104]. Evolutionary transitions frequently occur at critical points [99, 87] that
often involve (or can be understood by) some kind of structural property. Network
theory is a tool for not only graphically displaying the structure of a complex system,
but also for understanding the logic and evolutionary principles that underpin these
systems.

a

b 

c 

Fig. 1 Visual notations in biology and software. (a) The Synthetic Biology Open Language
(SBOL) defines standardised visual notations for representing genetic constructions and biological
designs such as DNA sequences, regulatory elements, and functional parts, as well as their con-
nections and interactions within a biological system. Visual symbols represent promoters, coding
sequences, terminators, and other genetic components, making it easier to communicate biologi-
cal ideas across communities. (b) In software engineering, class diagrams are a form of structural
diagram implemented in the Unified Modeling Language (UML). They serve the purpose of con-
ceptualizing and representing the distinct attributes of software components, as well as their inter-
relationships, within a given system or software application. The illustration depicts a section of the
class diagram used to create a racing game. (c) The network representation of the class diagram in the
video game Prorally 2002 (Ubisoft, 2002). Colour denotes the subsystem the software component
belongs to (i.e., physics, rendering, audio, etc.), and node size represents the in-degree.
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Networks provide a means to investigate the relationship between system struc-
ture and dynamics, offering an intuitive framework to represent intricate inter-
dependencies among system components. Their versatility lies in their ability to
capture both local and global properties, enabling the analysis of small-scale inter-
actions and large-scale emergent phenomena. Whether it’s understanding the spread
of diseases, analyzing information flow in social media, or optimizing transportation
networks, graphs offer a robust mathematical language for studying complex systems
and their dynamics. The effectiveness of networks as a mathematical representation
of complexity has led researchers to embrace them in various scientific disciplines.
This multidisciplinary approach facilitates the integration of theoretical and empiri-
cal approaches, allowing us to better comprehend and predict abrupt human-induced
changes in ecosystems. Many examples demonstrate how networks can deepen our
understanding of the impact of human actions on the biosphere. By leveraging the
power of networks, we can develop strategies to mitigate the effects of human actions,
a crucial challenge in the era of climate change.

2 Measures

A first step in analyzing the structure of complex systems is often to make a picture of
it. The human eye is extremely powerful at picking out visual patterns and allow us to
put visualization to work on our studies. A network 𝐺 = (𝑉, 𝐸) is a graphical repre-
sentation that consist of just two fundamental elements: nodes (or vertices) 𝑣𝑖 ∈ 𝑉 and
pairs of nodes (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 so-called links or edges. Despite this apparent simplicity,
networks can express complex patterns by connecting nodes and links in numerous
ways. This approach may be beneficial even in systems that do not inherently suggest
a network [60] (see Figure 2).

Network visualization is, however, only really useful for (a) small networks (up to
a few hundred or thousands of vertices), and for (b) sparse networks, that is, when the
density of connections is low as not to obscure the main structural features. If there
are too many vertices or links, then renderings will be complicated and difficult to
understand (such network diagrams are popularly known as ’hairballs’). Many of the
networks that interest scientists today have hundreds of thousands or even millions
of nodes, which means that visualization is not of much help in their analysis and
we need to employ other techniques to determine their structural properties. Here,
network theory has developed a large toolkit of measures and metrics that can be
useful to understand what data are telling us, even in cases where visualization is not
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possible.
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Fig. 2 Network representation of time series. (a) A Horizontal Visibility Graph (HVG) is a
graph representation constructed from time series or one-dimensional data. The HVG is formed by
converting time series data into a graph using an algorithm based on the idea of horizontal visibility.
(b) Each time series point is treated as a node in the HVG. When a data point at one time step ”sees”
another data point at a different time step and no other point between them has a higher value, a link
is established. (c) The HVG enables the use of graph theory to understand the underlying structure
or features of time series data in a variety of domains such as signal processing, economics, and
natural sciences.

2.1 Degree

A convenient notation for mathematical purposes is the adjacency matrix. The adja-
cency matrix 𝐴 of a simple network 𝐺 = (𝑉, 𝐸) is the matrix with elements 𝐴𝑖 𝑗 = 1
iff (𝑖, 𝑗) ∈ 𝐸 and 𝐴𝑖 𝑗 = 0 otherwise. The structure of the adjacency matrix is in-
formative. For an adjacency matrix with no self-edges, the diagonal elements are all
zero, while a symmetric matrix shows that the network edges are all bi-directional
(so-called ’undirected’ edges). In some cases, we would like to represent edges as
having a strength, or a weight, or a value attached to them. For example, Internet edges
might have weights representing the amount of data flowing along them. In a social
network, edges might have weights representing the frequency of interactions. In
neural networks, learning processes reinforce specific connections between neurons,
and weights might represent the likelihood of signal propagation from one neuron
to the next. These weighted networks can be represented by giving the elements of
the adjacency matrix values equal to the weights of the corresponding connections,
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i.e., the volume of traffic carried by a communication link, the number of social
interactions, or the strength of a neuronal connection.

The most basic structural property of any node 𝑖 is its degree 𝑘 (𝑖) or the number
of links connected to it. The degree can be written in terms of the adjacency matrix
as follows:

𝑘𝑖 =

𝑁∑︁
𝑗=1

𝐴𝑖 𝑗 (1)

where 𝑁 = |𝑉 | is the number of nodes. Every edge of an undirected network has two
endpoints and if there are 𝑚 edges in total there are 2𝑚 ends of edges:

2𝑚 =

𝑁∑︁
𝑖=1

𝑘 (𝑖) (2)

or

𝑚 =
1
2

𝑁∑︁
𝑖=1

𝑘 (𝑖) = 1
2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐴𝑖 𝑗 (3)

The above result is often used in the study of networks. Notice that the maximum
possible number of edges in an undirected network is(

𝑁

2

)
=

1
2
𝑁 (𝑁 − 1) (4)

By dividing the number of edges 𝑚 by this maximum possible, we obtain the con-
nectance (𝜌) or density of a network, i.e., the fraction of edges that are actually
present [76]:

𝜌 =
𝑚(𝑁
2
) =

2𝑚
𝑁 (𝑁 − 1) =

⟨𝑘⟩
𝑁 − 1

(5)

where ⟨𝑘⟩ is the average degree of a vertex in an undirected network. A dense
network is one in which the density tends to a constant as 𝑁 approaches infinity. In
this situation, as the network grows in size, the proportion of non-zero entries in the
adjacency matrix remains constant. The density of a sparse network, on the other
hand, approaches zero as the network size increases, and so the average degree tends
to remain constant. Almost all real-world systems are thought to be sparse networks,
which has profound implications for our understanding of complex systems [90].
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2.2 Percolation

A system is a set of nodes that are linked together through a chain of intermediate
connectors. Nodes that have no connection to the rest of the connected group of
species, genes, or people are almost certainly to be removed from the global struc-
ture. This raises the question of how the system components were first joined together.

A simple model provides a broad view of this problem (see Figure 3). Consider a
square grid of 𝐿 × 𝐿 water pipes. This spatial network has three types of pipes: (1)
pipes that are only open, (2) pipes that are closed, and (3) pipes that are open and
may be linked to the left-hand side via a global route. We are interested in the circum-
stances that allow global routes to appear. Assume that a random pipe on this lattice
is opened with probability 𝑝, with the other pipes remaining independent. Open pipes
look separated from one another with low 𝑝 values. Although the density of open
pipes rises linearly with 𝑝 (on average, we will have 𝑝𝐿2 open pipes), the global
connectedness does not. The fraction of connected pipes is a non-linear function of
the probability 𝑝. For low 𝑝, this fraction stays constant until the critical value of
𝑝 = 1/2 (the so-called ’percolation threshold’) is achieved, at which time the water
percolates the grid and a global route connects its opposing sides [56].

Percolation transitions like these occur in all types of networks. The simplest
model of a random network, the Erdős-Rényi graph [39], provides a null hypoth-
esis for percolation phenomena in disordered systems. The number of nodes 𝑁 in
the random graph is fixed, and each edge is present with probability 𝑝 and missing
with probability 1 − 𝑝. Consider the two extreme scenarios of this model. When
𝑝 = 0, each vertex is an island: the network comprises 𝑁 isolated components,
each of which has precisely one vertex. When 𝑝 = 1, the random network shows
all possible edges, resulting in a single linked component. A ’clique’ is the formal
term for this configuration in which a network of 𝑛 nodes is linked to every other node.

What happens when probability of connection continuously increases from 𝑝 = 0
to 𝑝 = 1 in a random network? We may hypothesize that the size of the largest
connected component 𝑆(𝑝) grows linearly with 𝑝. But something much more inter-
esting happens. The fraction 𝑆 of nodes in the largest connected component changes
abruptly as the system progresses from disconnected to fully connected. At some
critical value of the average degree 𝑧 = 𝑝(𝑁 − 1), the random network exhibits a
phase transition [87]. A large connected component emerges at the critical point
𝑧 = 𝑧𝑐 = 1. When 𝑧 > 𝑧𝑐, most nodes are linked in a single graph; however, when
𝑧 < 𝑧𝑐, the system breaks down into many little subgraphs. That is, the random
network predicts the emergence of a percolation threshold separating a disconnected
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Fig. 3 Using a square regular lattice for water transportation. In a pipe grid, the probability 𝑝

(horizontal axis) of opening a pipe (forming an edge) and the total fraction of nodes transporting
water (vertical axis) are not linearly related. Nodes on opposing sides of the lattice are part of global
transportation routes beyond a critical probability of 𝑝 > 𝑝𝑐 = 1/2, even when pipes are randomly
opened. Blue and grey circles represent water-flowing and disconnected nodes, respectively.

phase from another configuration in which most (if not all) components are connected
by at least one global route. This prediction applies to all types of networks, as the
local structure at the percolation threshold is expected to be a tree with no loops [21].
However, in real systems, there is also a tendency to short loops [77], which are also
very sparse structures.

2.3 Clustering

Random graphs explain the basic features of real-world networks, like the emergence
of a large connected component associated with the percolation transition. The ran-
dom network must be extended to account for other empirical features, particularly
when examining local network structures. For example, in social networks [74], the
notion of transitivity significantly influences the associations between nodes [49].The
ideal concept of transitivity suggests that connections follow a ’friend of a friend’
pattern, often observed in well-connected, fully-linked networks (or cliques). Yet,
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most real-world networks, being inherently sparse, operate under partial transitivity.
For instance, the fact that ’A’ is acquainted with ’B’ and ’B’ with ’C’ does not guar-
antee that ’A’ directly knows ’C’ in social networks.

The clustering coefficient may be used to measure the degree of partial transitivity
in real systems. The clustering coefficient 𝑐𝑖 of a vertex 𝑖 is the ratio between the
number of edges 𝑒𝑖 among its nearest neighbors and its maximum possible value [70]:

𝑐𝑖 =
𝑒𝑖(𝑘𝑖
2
) =

2𝑒𝑖
𝑘𝑖 (𝑘𝑖 − 1) (6)

This coefficient ranges from 0 to 1. 𝑐𝑖 = 1 denotes complete transitivity, i.e., a
network composed entirely of cliques. If 𝑐𝑖 = 0, there are no closed triads. This can
happen in a number of network types, including trees (which do not have any loops)
and square lattices (which have closed loops with an even number of vertices but
no closed triads). There is no transitivity or network clustering in random networks
because the chance that any two vertices are neighbors is the same, no matter what
the nodes are. As a result, in a random network, the average clustering coefficient
is ⟨𝑐⟩ = 𝑝 = ⟨𝑘⟩ /(𝑁 − 1), which goes to zero in the limit of high 𝑁 . Empirical
clustering values often range from 0.01 to 0.5, indicating considerable differences
between random and real networks [118].

Many real-world networks display an approximate degree dependence, with higher
degree vertices having a lower clustering coefficient on average [64]. Clustering may
also be used to detect so-called ”structural holes”[20] in the network, or missing
linkages between unrelated nodes linked indirectly via a third vertex. Structured
holes are negative for transmission efficiency because they restrict the number of
alternate pathways through which information may travel. Structured holes, on the
other hand, might be advantageous for a central node whose friends lack connections,
granting control over information flow between those friends.

2.4 Motifs

Clustering coefficients are instrumental when looking at the local structure of social
networks. When applied to directed networks, where imbalanced information, energy,
or matter flow predominates, this coefficient is less effective. An alternative lens
to explore network architecture involves network motifs [66]. These motifs denote
compact subgraphs comprising 𝑀 nodes, interconnected by a subset of links within a
larger network with 𝑁 > 𝑀 nodes. For each value of 𝑀 , a finite set of variants exists
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(see Figure 4a). Counting the occurrences of subgraphs within a network generates a
frequency spectrum that provides key insights into their role as basic building blocks.
Some of these subgraphs occur at considerably greater frequencies than expected in
random graphs. To assess the significance of these occurrences, the Z-score provides
a statistical metric that quantifies the prevalence of a particular subgraph Ω𝑖 across
the network [66]:

𝑧(Ω𝑖) =
𝑁𝑟𝑒𝑎𝑙 (Ω𝑖) − ⟨𝑁𝑟𝑎𝑛𝑑 (Ω𝑖)⟩

𝜎(𝑁𝑟𝑎𝑛𝑑 (𝜎𝑖))
(7)

where 𝑁𝑟𝑒𝑎𝑙 is the number of appearances of the subgraph Ω𝑖 in the network,
⟨𝑁𝑟𝑎𝑛𝑑⟩ is the average number of appearances of the subgraph Ω𝑖 in a large number
of randomised networks with the same number of nodes and degree distribution as
the original network, and 𝜎 denotes the standard deviation. A subgraph’s Z-score
may be positive or negative; 𝑧(Ω𝑖) > 0 indicates that it is greatly overrepresented (it
is a motif) in the original network relative to randomized, and 𝑧(Ω𝑖) < 0 indicates
that it is severely underrepresented (anti-motif). There are some subgraphs that are
overrepresented in the structural and functional networks of the human brain [95, 68].

Although motif analysis is a valuable tool, e.g., when assessing the vulnerability of
complex networks [28], its biological relevance in general remains unclear [91, 58].
However, synthetic biologists have made extensive use of the motif framework to
understand and exploit design spaces in their biological designs. For instance, an
exhaustive analysis of feedforward motifs in regulation has revealed that the most
common ’band-pass filter’ design in evolution is also the most robust one, both
in terms of dynamical properties as well as resilience to mutations in their com-
ponents [82]. Similarly, understanding biological motifs underpins our capacity to
engineer self-organized criticality [117], associative learning [62] and more gener-
ally, both temporal [36] and spatial patterns [33] (see Figure 4b,c).

Still, it would be unreasonable to directly infer functionality from the presence
or absence of specific motifs, given that a specific subgraph might fulfill a variety
of roles in different systems. For example, flexible components that modify their
mode of operation to replace damaged or absent components might achieve resilient
functionality [101]. According to synthetic models, brain networks are formed to
maximize the number and diversity of motifs, as local structural variability enables
an extensive spectrum of functional states [95]. Computational research suggests that
the degree of synchronization exhibited by a motif is influenced by its structure.
Motifs with greater density of links are more likely to synchronize compared with
those with fewer connections.
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Fig. 4 Motif analysis in biology. (a) List of 3 and 4 node undirected network motifs. Directed motifs
(right) display a wider range of patterns than undirected motifs (left), resulting in more complex
networks of connections. Synthetic biologists have taken inspiration from these smaller subnetworks
to design complex biological circuits. These motifs have proven useful in the implementation
of temporal patterns, such as (b) oscillators, e.g., the repressilator circuit [36], which features
a cascading triad of inhibiting transcriptional regulators (typically TetR, CI and LacI), yielding
an oscillation every 150 minutes. The repressilator can be exogenously controlled and owes its
robust behaviour despite its simplicity to the underlying transcriptional motif. Robust spatial pattern
formation induced by lateral inhibition (c) also hinges on specific design motifs [33], in the example
shown a communication-coordinated feedback loop (LuxR-LuxI) promotes cellular adhesion (JunA)
while also arresting bacterial growth (MinC), creating regular patterns of cellular density with a
characteristic wavelength of 0.2 cm in synthetic E. coli colonies.
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3 Evolution

While random graphs offer insights into network structures, they possess a fundamen-
tal limitation in their static nature. Random theory depict networks where all nodes
are simultaneously created and remain unaltered, overlooking the dynamic expansion
processes prevalent in real-world systems. Take cities, for example. They exhibit a dy-
namic nature akin to living organisms [119, 120]. The complex development of urban
networks has been studied from the perspective of fractals [15] and chaos theory [24],
since both include self-similar structures as well as sensitivity to initial conditions.
This complex city expansion often reflects a combination of distinct developmental
patterns: an urban network core surrounded by a grid-like expansion that conforms
to the principles of urban planning, while the periphery experiences a more organic
and unpredictable growth [114]. A static depiction of networks overlooks the com-
plex interplay among historical events, regulatory influences, and selection factors.
Embracing dynamical models is crucial to understanding the evolving dynamics of
cities [10] and other complex networks.

An open question is to what extent we can define a universal theoretical framework
for evolving networks. While basic growth mechanisms, like preferential attachment,
contribute to explaining common properties such as the power-law degree distri-
bution, they fall short in capturing the distinctive nature of individual networks.
Understanding the evolution of real-world networks necessitates a combination of
structural traits beyond local features.

3.1 Growth

Many interesting examples of growing networks are related to evolutionary pro-
cesses, whether in natural or artificial systems. For example, although technical
breakthroughs are frequently the result of purposeful efforts, George Basalla ob-
served that a broad range of inventions cannot be explained solely by intentional
processes, implying deep analogies between biology and technology that have been
the focus of extensive research [11, 72, 97]. Furthermore, networks may be used to
explore the parallels (as well as the differences) across various evolutionary systems.
Historical events both have a significant impact on the course of technology and biol-
ogy, often resulting in unexpected detours on the path to innovation [5]. Biology and
technology also depend on differential replication, in which accidental, seemingly
random changes are inherited by descendants. Similar to selection forces in evolution,
artifacts are also susceptible to external success measures [65], such as reliability,
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performance, novelty [32, 69], and even aesthetic preferences.

Networks are a promising approach to study the evolution of technology, which
lies at the intersection between statistical physics, computer science, and evolutionary
biology [93]. The network of patent citations, for example, is a scale-free network,
a property also observed in other physical, natural, and man-made systems in which
the degree distribution 𝑃(𝑘) is a power-law rather than a normal distribution:

𝑃(𝑘) = 𝑈𝑘−𝛾 (8)

where𝑈 is a constant, and 2 ≤ 𝛾 ≤ 3 is the exponent of the power-law [8]. Power law
distributions are different from normal distributions in that they do not have a peak
at the average degree ⟨𝑘⟩, and they are more likely to contain extreme degree values.

Assuming that the amount of citations is a reliable indicator of a technology’s im-
portance, the power-law distribution of citations may be interpreted as an indication
of inequality between innovations. But what factors contribute to the popularity of
a node? De Solla Price suggested the ‘cumulative benefit’ mechanism for citation
networks in 1965, stating that ‘there is a likelihood that the more an article is cited,
the more probable it is to be mentioned later’ [94]. This process is similar to the ‘rich
get richer phenomenon’ proposed by Yule [125] and Simon [85], as well as the newer
concept of ‘preferential attachment’ [9].

We can incorporate the mechanism of ‘cumulative advantage’ into a model of
growing networks, where the rate of incoming links is proportional to the degree of
any node:

Π(𝑘) ∼ 𝑘𝛽 (9)

where the attachment exponent 𝛽 regulates the strength of link reinforcement. It
is possible to demonstrate that the above equation produces a degree distribution that
follows a power-law [125, 9]. Although this model is often simplistic for reproducing
real-world degree distributions, it can be easily expanded. For example, this equation
does not take into account existing temporal relationships between inventions. To
understand the evolution of technology, we must consider that individual traits are
not the unique criteria of success; the environment must also be adequate, since their
role may change over time in evolution (e.g., an exaptation [48]). Taking into account
this, we can define a more realistic model for the growth of patent citations that
combines preferential attachment with temporal dependence [115]:

Π(𝑘, 𝜏) ∼ 𝑘𝛽𝜏𝛼−1 exp(𝜏/𝜏0)𝛼 (10)
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where 𝜏 is the node age, the exponent𝛼 > 0 weights how quickly the ageing influences
the chance of attachment, and 𝜏0 is a scale parameter that determines the rightward
extension of the ageing curve. We can verify these assumptions in a database of over
3 million patents [115], which suggests a complex interplay between structure and
environment in the evolution of technology. However, a power-law degree distribution
is a general feature that many systems have, hence it cannot identify what distinguishes
a network from others.

3.2 Modularity

A modular system is formed by quasi-independent parts that appear integrated within
themselves, but also exhibit a certain degree of interdependency among them. Mod-
ularity is considered a prerequisite for the adaptation of complex organisms and their
evolvability [83]. This is particularly evident in cellular networks, where modular-
ity may be identified at the topological level [79, 92]. In many situations, modular
architectures seem to be linked to functional traits: for example, a group of closely
similar proteins may all be involved in cell division or communication [53]. While
empirical research, e.g. [38], suggests a potential relationship between modularity
and functional traits, no universal laws or consistent patterns have emerged in relation
to modular structure. A main obstacle is the need to get reliable functional data, which
involves the detailed and costly inspection of a large number of nodes.

An active area of research combines statistical physics with computational ap-
proaches to develop community detection algorithms that solve this problem [70].
The approach takes into account a decomposition of the graph 𝐺 = (𝑉, 𝐸) into a
collection of 𝑠 subgraphs 𝐶 = {𝐶𝑖 ⊂ 𝑉 : 1 ≤ 𝑖 ≤ 𝑠} that defines a partition. Because
there are so many possible partitions, it is critical to have a reliable index for assessing
the degree of connectivity between alike nodes in the network. The optimal partition
is determined by maximizing the modularity index 𝑄 = 𝑄max = max(𝑄) [71]. The
modularity score is:

𝑄 =

𝑠∑︁
𝑖=1

𝑒𝑖

𝑚
−

(
𝑑𝑖

2𝑚

)2
(11)

where 𝑒𝑖 is the number of edges in module 𝑖, 𝑑𝑖 is the total degree of nodes in module
𝑖 and 𝑚 is the number of edges in the full network. This method is widely used, but it
comes with several limitations (see Figure 5). The so-called ’resolution limit’ [42] is
a significant constraint that forces the algorithm to integrate small modules whenever
the merging gives a positive gain. Let’s define the gain Δ𝑄 as follows:
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Δ𝑄𝑖 𝑗 =
𝑒𝑖 𝑗

𝑚
− 2

(
𝑑𝑖

2𝑚

) (
𝑑 𝑗

2𝑚

)
(12)

where 𝑒𝑖 𝑗 is the number of edges between modules 𝑖 and 𝑗 . A positive gain Δ𝑄 > 0
occurs when the number of edges between two subsets of nodes is greater than the
expected number in a random graph [46]:

𝑒𝑖 𝑗 >
𝑑𝑖𝑑 𝑗

2𝑚
(13)

In sparse or large networks, this value can fall below one ( 𝑒𝑖 𝑗 < 1), prompting the
merging of weakly linked modules, contrary to our intuition that they should remain
separate [46]. The resolution limit results from the modularity equation’s null model,
which assumes equal probabilities of node connections. This assumption may not
hold valid in large or geographically embedded networks, as each node may only
have a finite ”horizon” within which it may communicate with other nodes [111]. For
example, each connection in an intercommunication network has a cost that lowers
the likelihood of connecting with another one separated by a large distance [25].

Modularity maximization presents an inherent challenge: maximizing the first term
of the modularity equation often requires including numerous edges within modules,
while reducing the second term necessitates dividing the graph into smaller, low-
degree modules. Finding the optimal balance is a hard computational problem. And
as a result, all practical modularity algorithms are based on heuristics, which yield
suboptimal partitions [18]. Furthermore, it is unclear how to tune the parameters
of the maximization algorithm to obtain the optimal solution. One method involves
sweeping the parameter space by varying the temperature in a simulated annealing
search [84]. The network gets clustered into an increasing number of groups and mod-
ularity values when the temperature is lowered. The shift from low to high modularity
is not smooth, but consists of multiple phases separated by abrupt discontinuities (see
Figure 5a). The presence of multiple potential solutions, each with slightly different
modularity scores for a given network (Figure 5b), reveals a landscape of local max-
ima [46] (see Figure 5c). To address this problem of degeneration, consensus-based
solutions that identify resilient communities are necessary.

Evolution cannot invariably produce maximally modular networks when func-
tional and cost constraints are present, which is a more significant limitation than the
constraints associated with a mathematical definition of modularity. The so-called
”breakdown of modularity” involves a transition from modular to well-connected
networks [105, 43], and it could be related with neurological disorders including
Alzheimer’s disease or schizophrenia [27, 2]. An extensive search of the space of
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3-input logical functions reveals that not all minimal feed-forward Boolean networks
(FFBNs) are modular [105] (see Figure 5d). Looking at this phenotypic network, we
can observe that evolution of circuits such as the multiplexer and the majority func-
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Fig. 5 Limits to modularity. (a) A simulated annealing search across a broad temperature range
finds abrupt modularity transitions separating homogeneous phases. The presence of stable phases
suggests how a partial (heuristic) search is likely to provide sub-optimal modularity values. (b)
Pairs (K𝑖 , K 𝑗 ) of 5-node cliques are connected by a single link (top) to create a 24-clique ring
network (bottom). The best modularity partition, which combines two neighboring cliques, has
slightly larger modularity 𝑄2 = 0.8712 than the intuitive partition, which arranges individual
cliques on their own, with modularity 𝑄1 = 0.8674. (c) The modularity landscape for this ring
network displays a high-modularity plateau of degenerated solutions (inset). (d) A phenotype network
(center) for each possible three-input Boolean function, with each node representing one logic
function. The functions that are most similar are linked together. The color of a node represents the
modularity of the most cost-effective (wire-wise) feed-forward Boolean circuit for implementing
that function. A light blue square (left) and a circle (right) highlight two important functions:
”majority” and ”multiplexor.” Evolving a circuit while simultaneously minimizing the number of
wires and implementing these target functions inevitably reduces the modularity of its predecessors.
The ”breakdown of modularity” refers to the transition from modular ancestors to less modular
target circuits (both sides of the panel), as depicted in the phenotypic network (light blue arrows).
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tion, which are important in both electrical circuits and synthetic biology, is linked to
a modularity reduction from an ancestral Boolean function. In these circumstances,
the only way to retain modularity is to raise the cost of the circuit, for example, by
increasing structural redundancy.

3.3 Tinkering

Complex systems emerge from the nonlinear interactions among numerous compo-
nents, leading to unpredictable behaviors. Modular structures are a frequent com-
ponent of many complex systems, both in nature and in engineering. In technology,
modularity provides significant benefits as it establishes distinct task divisions, aim-
ing to reduce costs and enhance overall reliability [7]. Herbert Simon postulated that a
modular system can adapt more rapidly than one that is not modular [86]. But whether
modularity is a reflection of general evolutionary principles or is exclusive to certain
functional features is still an open question. The prevalence of modular designs in
both natural and human-made contexts suggests the existence of universal processes,
while current heuristic methods for identifying modularity paint a different picture.

According to [54], networks evolved under ”modularly varying goals” (MVG)
should also be modular. A network evolves under MVG when it adapts to changing
objectives over time, with each goal having the same subproblems as the preceding
one. An example is a logic circuit with multiple parts (modules), each implementing
a sub-function needed to perform the overall objective. When objectives change, mu-
tations that rewire these modules rapidly become permanent in the population to meet
the new objective. Computational investigations have shown that MVG may greatly
speed evolution (resulting in a modular network) as compared to evolution with fixed
or fluctuating objectives (leading to a non-modular network). However, it is unclear
how many biological settings vary in this modular fashion and if they change often
enough to produce modular systems.

Modularity has also been suggested to evolve, not because it promotes evolvability
in fluctuating environments, but as a by-product of selection that limits the number
of links [25]. A more intriguing possibility is that mutation mechanisms, like gene
duplication, could create a bias towards modular structures [92]. In the field of tech-
nology, makers employ previously accessible innovations as an integral aspect of their
work, such as by replicating designs and reusing components acquired from others.
Technology, like evolution, evolves mostly by tinkering [52], that is, by combining
prior components in novel ways [6]. Even in the absence of selection, a basic network
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model based on duplication and rewiring can predict not only the empirical degree
distribution but also the frequency of motifs in the real systems [112].

Fig. 6 Networks as evolutionary spandrels. Some network properties might be ”spandrels,” or
byproducts or unintended consequences of tinkering rules, rather than the outcome of selection
forces. (a) The ceiling of this cathedral shows decorated structures in the middle of four branches
(surrounded by a white line). These decorations may be understood as functional essential pieces,
although the space (an architectural spandrel) is just an unavoidable result of two arches. (b) We
can generate several motifs by copying nodes (blue arrow) or adding new links (red arrow) starting
from the simplest motif (top-left). This set of tinkering rules can generate three common motifs
(FFL, BIFAN, and MULTI-Y) in directed networks, the (c) truncated power-law behaviour of
mutualistic networks (inset) and the (d) relationship between the spectral radius 𝜌 (a robust measure
of nestedness, see [96]) and the number of species (S) (color nodes). Open circles correspond to a
total of 25 real mutualistic networks [109]. The red line represents the random network prediction
for nestedness, which is based on Wigner’s semi-circle rule [4] and describes the average behavior
but not the dispersion of real systems.

Agreement between data and generative models lead us to propose that motif
distribution is equivalent to the concept of evolutionary spandrel discussed by Gould
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and Lewontin [91]. A popular biological argument is that structural features (such as
modularity) have been selected for the advantages they provide. The logic goes as fol-
lows: certain features improve stability, improving the odds of survival; hence, these
traits must be evolutionary adaptations. Some features, however, are little more than
a ‘spandrel,’ as Gould and Lewontin call them [47, 59]. For example, we may observe
ornamented structures in the midst of four branches on the ceiling of a cathedral (see
Figure 6a). Although these decorations look like important functional elements, they
really reside in triangular spaces known in architecture as spandrels, which are an
inevitable outcome of having two arches. Similarly, even in the absence of selection,
the overabundance of certain subgraphs in networks may be an unavoidable result of
tinkering processes (see Figure 6b).

3.4 Nestedness

A widespread and intriguing pattern in ecological networks is nestedness, which
is characterized by the tendency of low-degree species to interact with a subset of
highly connected species [13]. The canonical interpretation of nestedness in ecolog-
ical networks is linked to the likelihood observing a particular pattern of interactions
compared to a null model [121]. This analysis is traditionally carried out on topolog-
ical matrices (meaning that they only account for the presence or absence of links).
Such matrices are typically nested, but it has been pointed out [96], that a better
characterization of these webs using link weights reveals that only a small fraction
of them exhibit nestedness [100], suggesting that a truly meaningful assessment of
nested patterns requires a weighted interaction matrix.

Edges in a nested network are organized in such a way that specialists interact
with a subset of the species whom generalists interact with. This definition has been
recently extended to quantitative networks using spectral graph theory [96, 109] (see
Figure 6d). Formally, nestedness is a systematic arrangement of non-zero entries in
the adjacency matrix. This pattern can be clearly identified by computing the so-
called overlap and declining fill (NODF[3]). For the bipartite graph 𝐺 = (𝑃, 𝑀, 𝐸)
with biadjacency matrix 𝐵 = [𝐵𝑖 𝑗 ]:

𝑁𝑂𝐷𝐹 (𝐺) = 1
𝐾


𝑁𝑃∑︁
𝑖, 𝑗=1

(
𝜃 (𝑞𝑖 − 𝑞 𝑗 )

∑𝑁𝑀

𝑘=1 𝐵𝑖𝑘𝐵 𝑗𝑘

𝑞 𝑗

)
+

𝑁𝑀∑︁
𝑘,𝑙=1

(
𝜃 (𝑟𝑘 − 𝑟𝑙)

∑𝑁𝑃

𝑖=1 𝐵𝑖𝑘𝐵𝑖𝑙

𝑟𝑙

)
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where 𝐾 = [𝑁𝑃 (𝑁𝑃 − 1) + 𝑁𝑀 (𝑁𝑀 − 1)]/200 is a normalisation constant to
ensure that 0 ≤ 𝑁𝑂𝐷𝐹 ≤ 100, 𝑁𝑃 = |𝑃 |, 𝑁𝑀 = |𝑀 |, 𝜃 is the Heaviside function
with 𝜃 (0) = 0, and 𝑞𝑖 and 𝑟 𝑗 are the degrees of nodes 𝑖 ∈ 𝑃 and 𝑗 ∈ 𝑀 , respec-
tively. A high NODF value implies that certain species’ interactions are a subset of
other generalist species’ interactions (and so the network demonstrates nestedness),
whereas a low value indicates clustering (thus implying modular structures).

Following an adaptationist view of naturally evolved systems, it has been ar-
gued that the presence of nested patterns is a consequence of underlying selection
processes that reduce competition relative to the benefits of facilitation, increasing
biodiversity [12] and food web persistence [61]. Supporting evidence for this view are
analytical approaches to generalized Lotka–Volterra equations with different func-
tional responses. However, recent papers have challenged this view [100]. Instead, it
has been argued that nestedness is likely to be a consequence (rather than a causative
property) of biodiversity, in particular of the heterogeneous distributions of connec-
tions [29, 96] (see Figure 6c). Furthermore, null models [109] have demonstrated
that nestedness can be easily generated from generative processes; this suggests that
tinkering models, which rely on basic copy and rewire processes, generate nested
structures, thereby implying that nestedness is an evolutionary spandrel [47, 109].
Thus, validation of empirical nested patterns should take into account the predic-
tions of tinkering models as a baseline to assess whether the observed patterns are
meaningful, i.e. deviating from null expectations (see Figure 6d).

4 Beyond Networks

Networks offer an efficient means of capturing both local and global structural fea-
tures, serving as a valuable framework for investigating the dynamic properties of
systems. However, their scope is limited to such pairwise interactions. In contrast,
hypergraphs provide a solution to this limitation by allowing edges to connect any
number of vertices (see Figure 7b), rendering them exponentially more powerful
and expressive in describing real-world interactions. Following previous notation, a
hypergraph 𝐻 = (𝑉, 𝐸) is a graph consisting of nodes (or vertices) 𝑣𝑖 ∈ 𝑉 and and
hyperlinks (or hyperedges) which can span any number of nodes (𝑣𝑖 ...𝑣 𝑗 ) ∈ 𝐸 .

For instance, hypergraphs are indispensable when pathogens exhibit varied in-
fection behaviors based on the presence or absence of multiple disease vectors [80]
(see Figure 7d), or in cases of symbiotic relationships involving more than two
species [67, 34]. In other ecological systems, conventional depictions of predatory
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interactions, such as those in food webs, typically involve only two species. However,
research has repeatedly demonstrated that many ecological interactions are of higher
order [1]. This means that they can involve more than two species [44], incorporate
external ecological factors that influence pairwise interactions [61, 116] (see Figure
7e), or are driven by density-dependent behavior (such as when prey change their
behaviour leading to their predators switching to other more suitable preys). In these
cases, a network formalism may fall short in capturing the essential structural prop-
erties that drive emergent dynamical features. Hypergraphs become a necessary tool
for making accurate predictions in systems with higher order interactions, due to their
enhanced expressiveness and flexibility, rendering them highly valuable in complex
systems research.

Given that the structure of ecological networks has been linked to patterns of
extinction and robustness [17], how does a hypergraph perspective address these
views? It has long been proposed that a modular network structure prevent the spread
of perturbations (such as secondary extinctions) in ecological networks, with mod-
ules acting as firewalls against the propagation of extinction cascades [98, 73]. This
suggests that modular patterns should be more resilient and, consequently, preserved
in evolutionary processes. Conversely, mutualistic networks tend to exhibit a nested
rather than modular pattern, which has also been associated with increased resilience
and productivity in various ecological systems [12]. This assessment goes beyond
mere conjecture; Sanders and colleagues demonstrated through field experiments with
plant-insect communities that more complex food webs can indeed buffer against the
effects of species loss [81].

Traditionally, modularity and nestedness were considered mutually exclusive [96,
41] and imbued ecological networks with different dynamical properties [12]. Various
network models have emerged, attempting to account for their independent origins.
However, recent research in hypergraphs has revealed that when modularity and nest-
edness inhabit distinct dimensions of high-order interaction graphs, or hypergraphs,
they can coexist [116]. In this way, a projection of a tripartite hypergraph into a
network (by collapsing the adjacency matrix from 3 to 2 dimensions) can recover
either structural pattern (see Figure 7a).

Fig. 7 Hypergraphs examples and bipartite projections. A tripartite hypergraph of host-parasites-
habitat can be decomposed or projected into host-parasite or host-plant bipartite networks (a). These
projections can display distinct structural patterns such as the host-plant network being modular
(left) and the host-parasite being nested (right). ...
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Fig. 7 ... Hypergraphs can also be reconstructed from ‘partial’ information, such as separate
bipartite networks (b). Here, two bipartite networks are integrated into a hypergraph containing
plants, viruses and biomes [116]. Many systems are amenable to a hypergraph representation: from
lichen symbionts that contain many fungi-algal-bacterial relations [34] (c), plant-butterfly-parasite
interactions [102] (d) and plant ecotype-parasite infection [116] (e).
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Hypergraphs can also help researchers integrate different types of interactions
in a single graph object. For instance, to better understand the compounding effect
of human laws in biodiversity and biological interactions [122, 37]; the complex
relationships between landscape, species and ecosystem services [40]; how anthro-
pogenic climate change drives the reorganization of ecological networks [45]. With
hypergraphs it also becomes possible to incorporate spatial or temporal dimensions
to ecological networks [116], allowing us to address when structural patterns are
driven by seasonal variation, or when interactions are guided by ‘ecotypes’ (see Fig-
ure 7e, i.e. when species change their morphological features depending the biome
they inhabit [51], thus altering the suite of interactions they partake in). However,
although many of the structural metrics mentioned in this chapter also exist for hy-
pergraphs [14], the field of empirical research in hypergraphs is still pretty much in
its infancy, and further examples and mechanistic models will be necessary to bring
them up to par to the ubiquity of network analysis.

5 Discussion

Biological complexity results from adaptations and shifts to novel features, taking
place at various scales. Not all network characteristics, however, are the outcome of
direct selection processes; rather, they can unexpectedly emerge from internal dynam-
ics, akin to evolutionary spandrels. Scale-free degree distributions, motif frequencies,
and even nestedness may have emerged as accidental outcomes of non-adaptive pro-
cesses, such as tinkering rules. Simple growth models, however, are insufficient to
explain how network complexity has evolved over time. Exogenous and endogenous
mechanisms both contribute to the emergence of complexity.

Not all innovations lead to more complexity; the choice of which ones persist is ul-
timately based on environmental conditions and cost-benefit analyses. In technology,
software engineers try to manage complexity by rationally subdividing a system into
modules that interact in a neat and clear way [7]. External sources of complexity, like
performance constraints, can entangle the original design, which soon becomes much
less modular [105]. Software developers actively oppose complexity in this situation
because unwanted complexity makes the system much more challenging to understand
and maintain, often leading to entangled and monolithic systems [35]. Another source
of complexity is the design principle that maximizes reuse of existing components.
The merging of an existing system with an external one, e.g., a third-party library, re-
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sults in complex co-evolutionary dynamics between different software projects [103].
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⟩) display
a fundamental trade-off which confines networks to a specific domain of this design space [57].
Here, 𝐻 (𝑋) = −∑

𝑛 𝑃 (𝑥𝑖 ) log2 𝑃 (𝑥𝑖 ) represents the Shannon’s entropy of a given distribution
𝑋, and the distribution 𝑊𝑜𝑢𝑡

𝑖
= {𝑤𝑖 𝑗 }/

∑
𝑗 𝑤𝑖 𝑗 is the normalized set of weights from node 𝑖 to

every other node 𝑗. These weights can be understood as the distribution of probabilities a random
walker might take when visiting node 𝑖. Regular structures (star, clique), lattices (ring) and typical
networks produced by standard generative models (Erdős-Rényi and Barabási-Albert) are shown in
this space. A forbidden region in the bottom right corner of the morphospace is uninhabited by any
real network.

We can use network morphospaces to characterise the vast landscape of network
designs and how external forces and internal constraints drive structural diversity.
These are representations of design spaces, where different networks are located
according to some well defined metrics. Typically, the morphospace dimensions
are chosen because they reflect some deeper insight into the evolutionary process
or constrains that limit what is possible in these systems, i.e. they often display
trade-offs between them. One such example is the network degeneracy-determinism
morphospace (see Figure 8). This space quantifies the information contained in the
topology of a network and can be used to signal the presence of higher informative
scales. Here, determinism corresponds to the degree of determinism or certainty
associated to a random walker traversing the network in every node, and the second
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dimension captures the system’s degeneracy or entropy in weight distributions [57].
The features of this morphospace have implications for the dynamical properties of
brain activity [50].

In this chapter we have explored a wealth of tools, metrics and morphospace
representations that allow us to map and navigate complex systems. Understanding
complexity not only gives us insights into the generative processes that underlie
biological and technological systems, but also informs the software and biological
engineers that want to manage the complexity of their designs. Stephen Hawking’s
prediction of a ’century of complexity’ seems to be spot on with our current reality,
which is distinguished by extraordinary technological advances contrasted against
profound social and planetary challenges. In this age of complexity, our analysis
of network architectures barely scratches the surface. Underlying there is a vast,
undiscovered terrain, just like the bigger complexities awaiting discovery and com-
prehension in the world around us.
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