$\begin{array}{ll} \displaystyle {\rm VNIVE}\, {\rm RSITAT} \\ \displaystyle {\rm I}\bar{\rm D} \tilde{\varphi}{\rm VAL}\bar{\rm ENCIA} \quad {\rm Master\,Universitario\,en\, Bioinformática} \end{array}$

∑imh∩

Introduction to Complex Networks

Sergi Valverde Evolution of Networks Lab (ETL) Institute of Evolutionary Biology (CSIC-UPF) Consejo Superior de Investigaciones Científicas Prolog **@svalver** Eulisp

Lisp-

Pasca

Computational Systems Biology

Bertrand Russell

"A good notation has a subtletly and suggestiveness which at times make it seem almost like a live teacher ... and a perfect notation would be a substitute for thought"

quoted by Woodger (1937) The Axiomatic Method in Biology, pp. 18

Can we find a good notation for biological complexity?

Madsen et al. (2019) *Synthetic Biology Open Language (SBOL) v 2.3*

Angel Goñi

Figure 3: Main classes of information represented by the SBOL 2.x standard, and their relationships. Green boxes are "top level" classes, while the other classes are in support of these classes. Solid arrows indicates ownership, whereas a dashed arrow indicates that one class refers to an object of another class.

A Visual Language for Biology

Valverde et al. (2002) *Scale-Free Networks from Optimal Design*

Alan Kay

Hierarchical Small-Worlds in Software Architecture

A Visual Language for Technology

"Knowing how something originated often is the

FLITH AND SOMETHING ORIGINATED OF THE BEST CLUB FOR THE BEST CLUB FOR THE BEST CLUB FOR THE BEST CLUB FOR THE

ΥÌ

- Terrence Deacon

Do life and non-life share the same basic architecture?

Universality

Basic Properties Robustness and Fragility Hubs, Connectors and Paths **Evolution of Networks Community Structure**

Adjacency Matrix

Edge List

Network Representation

https://svalver.github.io/course

Introduction to Networks

42589 - Biologia de Sistemas Computacional

VNIVERSITAT đỡValència Máster Universitario en Bioinformática

This website contains a collection of online activities that are part of the curriculum for the Universitat de Valencia course "Biologia de Sistemas Computacional". These lessons can be used in combination Netlab, an online application designed to assist students to develop evolutionary models of complex networks.

Sergi Valverde, a CSIC tenured scientist from the Institute of Evolutionary Biology (CSIC-UPF), teaches the course.

Online activities

The following online activities require a WebGL compliant web browser.

- Defining a network (link): Input a simple network by hand and adjust its layout parameters.
- A Random Graph (link): When determining the relevance of network patterns, random graphs are utilized as null models. The Erdös-Renyi model generates random graphs with a fixed connection probability (p) and a

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2016, 7, 127-132

doi: 10.1111/2041-210X.12458

APPLICATION

BiMat: a MATLAB package to facilitate the analysis of bipartite networks

https://arxiv.org/abs/2410.16158

 ct $\bar{\mathbf{C}}$ $\overline{}$ $\overline{\mathcal{C}}$ dis-nn] cond-mat \triangleright ∞ \mathcal{L} $\overline{}$ \circ $\overline{}$ $\overline{4}$ \sim

20

Networks: The Visual Language of Complexity

Blai Vidiella, Salva Duran-Nebreda and Sergi Valverde

Abstract Understanding the origins of complexity is a fundamental challenge with implications for biological and technological systems. Network theory emerges as a powerful tool to model complex systems. Networks are an intuitive framework to represent inter-dependencies among many system components, facilitating the study of both local and global properties. However, it is unclear whether we can define a universal theoretical framework for evolving networks. While basic growth mechanisms, like preferential attachment, recapitulate common properties such as the power-law degree distribution, they fall short in capturing other system-specific properties. Tinkering, on the other hand, has shown to be very successful in generating modular or nested structures 'for-free', highlighting the role of internal, non-adaptive mechanisms in the evolution of complexity. Different network extensions, like hypergraphs, have been recently developed to integrate exogenous factors in evolutionary models, as pairwise interactions are insufficient to capture environmentally-mediated species associations. As we confront global societal and climatic challenges, the study of network and hypergraphs provides valuable insights, emphasizing the importance of scientific exploration in understanding and managing complexity.

Key words: Networks; Evolution; Hypergraphs; Complex Systems; Tinkering

Contributed chapter to "Nonlinear Dynamics for Biological Systems", M. Stich, J. Carballido-Landeira (Eds), Springer, Switzerland, 2024

Blai Vidiella ¹: ¹Institute of Evolutionary Biology, CSIC-UPF, Pg. Barceloneta 37, Barcelona 08003, Spain. ²Theoretical and Experimental Ecology Station, CNRS, Moulis, France. e-mail: blai.vidiella-rocamora@sete.cnrs.fr

Salva Duran-Nebreda \mathbf{D} : ¹Institute of Evolutionary Biology, CSIC-UPF, Pg. Barceloneta 37, Barcelona 08003, Spain. e-mail: salva.duran@ibe.upf-csic.es

Sergi Valverde^D: ¹Institute of Evolutionary Biology, CSIC-UPF, Pg. Barceloneta 37, Barcelona 08003, Spain. ³European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, 30123 - Venice, Italy. e-mail: s.valverde@csic.es

https://tinyurl.com/24e3n5tf

1. Explain how many bytes are needed to store this network using the adjacency list and the matrix representations.

2. Consider an alternative method for representing networks. Explain.

In-degree and Out-degree

Dominance hierarchies

$i=1$

Number of Edges

Local Clustering

Motifs

Motifs

Random Networks : *Robustness & Fragility*

[Kesten, Harry](http://en.wikipedia.org/wiki/Harry_Kesten) (1982), Percolation theory for mathematicians, Birkhauser

Percolation

Power outage after Hurricane Katrina hit the Gulf Coast

This image was take Aug 30 and shows the widespread power outages across the Gulf Coast after Hurricane Katrina ravaged the area. U.S. Air Force Image.

Disconnected Phase

Power grid before the Hurricane Katrina hit the Gulf Coast This image was taken Sept. 17,2003 and shows the city lights in the Gulf Coast clearly visible. U.S. Air Force Image.

Connected Phase

Theorem (Kesten, 1980)

In Bernoulli percolation with parameter *p* on the infinite square grid,

if $p \le 1/2$, the P (infinite cluster) = 0,

and

if *p* > 1/2 then P(infinite cluster) = 1

Randomness

The simplest model of a network : everything is boring

Paul Erdös (1913-1996)

p = probability of connecting a pair of nodes

N = number of nodes

Simulating Random Graphs

A static world w[it](http://svalver.github.io/netlab/exp7/exp7.html)hout geography

create (4)

for each (a)

for each (a) for each (b)

random-float $(1) < p$

add_edge(a, b)

for each (a) for each (b)

for each (a) for each (b)

Average degree

Average degree

 $\langle k \rangle$ _{rand} = 2*L N* $L = p$ $\overline{}$ *N* 2) = *p N*(*N* − 1) 2 $= p(N - 1)$

Degree Distribution

Degree Distribution

 $P(k) = p^k(1 - p)$ *N*−1−*k*

Discrete Binomial

 $P(k) = (p^{lk}(\frac{1}{k} - p)^{N-1-k})$ \mathcal{V} *N* − 1 \vec{k})

Poisson Distribution

Connected

$Q = 1 - S =$ *Probability that the vertex i does not belong to the giant connected component*

Disconnected

$Q^k =$ *Probability that* **none** *of its k neighbours belongs to the giant connected component*

Disconnected

Connected

$Q \equiv \langle Q \rangle = \sum$

Disconnected

$Q = \sum$ *k*≥0 *P*(*k*)*Q^k* $= e^{-z}$ ∑ *k*≥0 *zk k*!

 $1) S^* = 0$

Closed Form

Numerical Solution

S = 1 − *e* −*zS*

- $z = 1.01$
- $z = 1.008$

 $z = 0.98$ $z = 1$

```
import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(8,6), dpi = 160)
x = range(500)for z in [0.98, 1, 1.008, 1.01]:
    y = []S = 0.01for i in x:
       S = 1 - np \exp(-z * S)y.append (S)
    plt.plot (x, y,label = "z=%0.03f"% z)
plt.xlabel ("Time", fontsize= 18)
plt.ylabel('S", fontsize = 18)plt. legend (fontsize = 18)plt.show()
```


Numerical Solution


```
import matplotlib.pyplot as plt
import numpy as np
plt. figure (figsize=(8,6), dpi = 160)S_value = []z_values = [float(i)/40.0 for i in range(100)]for z in z_values:
    S = 0.01for j in range(500):
       S = 1 - np \exp(-z * S)S_values.append (S)
plt.xlabel ("z", fontsize= 18)
plt.ylabel ("S", fontsize = 18)
plt.plot (z_values, S_values)
plt.show()
```


Random graphs do not display clustering

Clustering

$\langle C \rangle_{rand} = p$ $\langle C \rangle_{rand} = p =$ ⟨*k*⟩*rand* <u> $\frac{1}{N}$ − 1 *u*</u>

Clustering

… but real-world graphs do!

$0.01 \leq \langle C \rangle_{\text{Facebook}} \leq 0.5$

⟨*C*⟩*rand* = ⟨*k*⟩ *N* − 1 = 103 109 ≈ 0.00000001

https://tinyurl.com/3p9fxnsc

3. Can you predict the average degree before running the simulation?

4. Is it possible to obtain a node with a very large number of links?

Man-made objects can be geometrically complex and do not resemble *ideal forms such as points, lines, planes, cubes, circles of spheres.*

Sergi Valverde and Ricard V Solé

NETWORKS

'Cities need to change to survive. As living beings that are constantly replacing their cells, rebuilding their veins and arteries, and pumping energy and matter or producing waste, cities are also growing and evolving as they age.' Just how complex, though, are cities? Sergi Valverde and Ricard V Solé of the the ICREA-Complex Systems Lab at the Universital Pompeu Fabra in Barcelona look at how network theory and emergent dynamics might be bringing us closer to an overarching theory of urban organisation.

> Songi Valvardo, Skolotar framo d a virtual skysorspor, GAEA-Compiux Symmus Lab, Universitat Pempeu Fabra, Barcelona, 2013 the skeedon of a building forms a uniform grid of kosizuntal layers. This highly regular organisation is the fingerprint of clearly and consocius planning.

Growth: City Networks

Evolution of Technology

The Evolution of Technology

George Basalla

 O Q $O O O G G$

Cambridge History of Science Series

Growth: Patent Networks

(Price, 1965) & (Price, 1976)

Number of Citations

Growth: Preferential Attachment

Cumulative degree distribution

 $P_{>k} =$ ∞ ∑ k' \equiv k *P*(*k*′) $P_{>k} = U$ ∞ *j* [−]*^γ* [≈] *^U*[∫]

∑

j=*k*

Activity: Preferential Attachment

5. How many nodes are "hubs"?

7. Does some low k node ever become a hub? How often?

6. How many nodes have only a few links?

How history and reinforcement influence network architecture?

Distance Theta Charge, Strength Gravity Friction

Size: Degree

 $|P(k)|$

https://tinyurl.com/3ttchcep

Network Robustness: Internet

Paul Baran presents his work at a RAND Alumni Association event on July 25, 2009

Network Robustness: Scale-Free *vs* **Random**

"Error and attack tolerance of complex networks" R. Albert, H. Jeong & L-A Barabási *Nature* **406** (2000) 378-382

8. If you wanted to shut down the network, how many nodes would you have to take out?

Activity: Robustness & Directed Attacks

https://tinyurl.com/3jkubj8j

9. Are collapses quick or gradual?

10. Can you predict the breaking point? Is this network fragile or robust? Why?

Network Efficiency: Hubs, Connectors & Paths

- Path Length
- Power of Matrices
- Geodesic Path
- Diameter
- Components
- Global Efficiency **v1**

Path Length

Click on a pair of nodes to see the shortest path connecting them.

https://tinyurl.com/587wsvwj

Global Efficiency: 0.190

Click the 'Failure' button repeatedly to remove nodes at random.

Describe the dynamical evolution of the shortest path under random failures.

Length of a path is the number of edges traversed along a path (not the nodes).

$$
A^2 = AA
$$

Number of paths of given length

Number of paths of length 2:

$$
N_{ij}^{(2)} = \sum_{k=1}^{N} A_{ik} A_{kj} = [A^2]_{ij}
$$

Number of paths of length 3:

Number of paths of length *r* :

$$
N_{ij}^{(3)} = \sum_{k=1}^{N} \sum_{l=1}^{N} A_{ik} A_{kl} A_{lj} = [A^{3}]_{ij}
$$

$$
N_{ij}^{(r)} = [A^r]_{ij}
$$

Network Distance

A geodesic path (or **shortest path**) is a path through a network between two vertices such that no shortest path exists.

The **shortest path distance** is the length of the shortest path, i.e., the smallest value of *r* such that:

$$
[A^r]_{ij} > 0
$$

In practice, there are more efficient ways of calculating shortest distances in a graph (e.g., **Dijkstra's Algorithm**).

Edsger W. Dijkstra (1930-2002) Turing Award (1972)

Network Distance

i

j

 $d_{jk} = \infty$

 $d_{ij} \geq$

k

Connected Components

Block diagonal form

Network Distance

Is your Network Large or Small?

Network Distance

Stanley Milgram (1967)

Brain of a worm (*C. Elegans*)

Electronic Circuits

Power grids

Linguistic Networks

Between Order and Randomness

Average Path Length

$log(N) = d log(z)$

11. Which shortcuts reduce the average distance ?

12. After completing 10 experiments, plot the (shortcuts, mean path length) curve. Can the distinction between good and poor networks be made?

<https://tinyurl.com/yv5u4kpu>

Time

By defining a few long-distance links, diffusion may be accelerated

Diffusion Processes

Small-World Lattice

Structure-Function Relationship

Can you control an epidemic?

Take action to prevent the spread of illness in various urban settings. After a small amount of vaccinations have been distributed, the epidemic continues to spread, and the players must act quickly to isolate everybody who could be sick.

NOTE: This game was designed in 2017.

https://tinyurl.com/c42yx3pc

Modularity *Evolution & Tinkering*

Network Adjacency Matrix

Modularity quantifies the degree to which nodes are grouped together and dependent on one another.

Definition

Newman & Girvan **Phys Rev E** 69, 026113 (2004)

How species coexist in a competitive world?

 U_3 $U₂$ $U₁$

(1) Divide up the network (2) Calculate the modularity value (Q) (3) Repeat until a solution is optimised

(1) Divide up the network

(2) Calculate the **modularity** value (Q)

of links in group - **Expected** fraction of links in group

For each of the modules

Number of links in the network

Girvan and Newman **PNAS** 99:7821 (2002)

(2) Calculate the **modularity** value (Q)

ANTI-MODULAR

RANDOM

MODULAR

Example (1/2)

$$
Q = \sum_{s=1}^{N_m} \left[\frac{l_s}{L} - \left(\frac{d_s}{2L}\right)^2 \right]
$$

$$
Q_{s_1} = \frac{1}{7} - \left(\frac{4}{14}\right)^2 = 0.06
$$

$$
Q_{s_2} = \frac{4}{7} - \left(\frac{10}{14}\right)^2 = 0.06
$$

$$
Q = Q_{s_1} + Q_{s_2} = 0.12
$$

Example (2/2)

$$
Q = \sum_{s=1}^{N_m} \left[\frac{l_s}{L} - \left(\frac{d_s}{2L}\right)^2 \right]
$$

$$
Q_{s_1} = \frac{3}{7} - \left(\frac{7}{14}\right)^2 = 0.18
$$

 $Q_{s_2}=Q_{s_1}=0.18$

 $Q = Q_{s_1} + Q_{s_2} = 0.36 > 0.12$

Random Modular Networks

14. Which network has more linkages, RMG (p,q) or RMG (q,p)? Which one is more modular? Why?

Distance Theta Charge Strength Gravity Friction

 $+$ Size Modules $P(intra)$ $P(inter)$

GCC

<https://tinyurl.com/4a7syzuk>

13. Can you use this model to generate a random graph? How?

Understanding the contributions of multiples forces in the evolutionary origins of *modularity*

connection cost $(P&CC)$

variation

hierarchical, functionally

modular networks

Evolution of Modularity

Diversity from Structural Rules Diversity from Structural Rules

TRENDS in Ecology & Evolution

Valverde and Solé, **Physical Review E** (2005) Solé and Valverde, **Trends Eco Evol** (2006)

Stephen Jay Gould

Richard Lewontin

Tinkered Evolution of Networks

Evolving complexity: how tinkering shapes cells, software and ecological networks

Ricard Solé^{1,2,3,4} and Sergi Valverde^{4,5}

Morphospaces

Degeneracy & Determinism

Determinism

Degeneracy

Effective Information

EI = Degeneracy - Determinism

 $EI = log_2(N) - H\left(\left\langle W_i^{in} \right\rangle\right) - log_2(N) + \left\langle H\left(W_i^{out}\right)\right\rangle$

Effective Information

 $EI = -H\left(\left\langle W_i^{in}\right\rangle\right) + \left\langle H\left(W_i^{out}\right)\right\rangle$ *EI = Degeneracy - Determinism*

16) Can you adjust model parameters to cross the diagonal? Why / Why not?

<https://tinyurl.com/5cvjz42b>

15) Explore how different networks are positioned within this morphospace. Rank them according to filled morphospace.

Networks are the language of complexity.

-
- Many real systems are close to the percolation transition.
	-
- Structure evidences multiple evolutionary mechanisms.
	-

Complexity emerges from simplicity.

Tradeoffs between robustness & efficiency.

"The future cannot be predicted, but futures can be invented"

–Dennis Gabor (Hungarian physicist)