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Bertrand Russell

"A good notation has a subtletly and suggestiveness 
which at times make it seem almost like a live 
teacher ... and a perfect notation would be a 

substitute for thought"  

quoted by Woodger (1937) The Axiomatic Method in Biology, pp. 18

Can we find a good notation for biological complexity? 

Madsen et al. (2019) Synthetic Biology Open Language (SBOL) v 2.3

Angel Goñi

A Visual Language for Biology



Valverde et al. (2002) Scale-Free Networks from Optimal Design

Alan Kay

A Visual Language for Technology



Knowing how something originated often is the best clue for how it works Terrence Deacon 

“Knowing how something 
originated often is the 
best clue for how it 
works” 

- Terrence Deacon

Do life and non-life share the same basic architecture? 

Universality



Basic Properties

Robustness and Fragility

Hubs, Connectors and Paths

Evolution of Networks

Community Structure

Index
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Edge List

Network Representation
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https://svalver.github.io/course

https://svalver.github.io/course
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Modular Nested

https://https://arxiv.org/abs/2410.16158

https://arxiv.org/abs/2410.16158


Activity: Defining Networks

https://tinyurl.com/24e3n5tf
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Put here

1. Explain how many 
bytes are needed to 
store this network 
using the adjacency 
list and the matrix 
representations. 

2. Consider an 
alternative method for 
representing 
networks. Explain.
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In-degree and Out-degree
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Dominance hierarchies



Number of Edges
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Local Clustering

ci =
ei

(ki

2)
=

2ei

ki(ki − 1)



Motifs



Motifs



Random Networks : 
Robustness & Fragility



Kesten, Harry (1982), Percolation theory for mathematicians, Birkhauser

0 1pc

How does connectivity 
affects behaviour?

Percolation

http://en.wikipedia.org/wiki/Harry_Kesten


0 1pc

Power outage after Hurricane Katrina hit the Gulf Coast
This image was take Aug 30 and shows the widespread power 

outages across the Gulf Coast after Hurricane Katrina ravaged the 
area. U.S. Air Force Image.

Disconnected Phase



0 1pc

Power grid before the Hurricane Katrina hit the Gulf Coast
This image was taken Sept. 17,2003 and shows the city lights in the 

Gulf Coast clearly visible. U.S. Air Force Image.

Connected Phase



Theorem (Kesten, 1980) 

In Bernoulli percolation 
with parameter p on the 
infinite square grid,  

if p <= 1/2, the  
P(infinite cluster) = 0,  

and  

if p > 1/2 then  
P(infinite cluster) = 1 



Randomness

The simplest model of a network : everything is boring

Paul Erdös (1913-1996)



p = probability of connecting a pair of nodes

N = number of nodes

Simulating Random Graphs

A static world without geography

http://svalver.github.io/netlab/exp7/exp7.html


create(4) 
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Average degree
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Degree Distribution 
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Degree Distribution 
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Degree Distribution 
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Degree Distribution

Poisson Distribution

P(k) = e−z ( zk

k! )
z = ⟨k⟩



Percolation Transition

p = 0 p = 1



Percolation Transition
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Percolation Transition
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Percolation Transition

Q = 1 − S =                          Probability that the vertex i does 
not belong to the giant connected component

Si
Disconnected

Si
Connected



Percolation Transition

Qk = Probability that none of its k neighbours 
belongs to the giant connected component

Si
Disconnected

Si
Connected



Percolation Transition

Q ≡ ⟨Q⟩ = ∑
k≥0

P(k)Qk

Si
Disconnected

Si
Connected



Percolation Transition

Q = ∑
k≥0

P(k)Qk

= e−z ∑
k≥0

zk

k!
Qk = e−z ∑

k≥0

(zQ)k

k!

ezQ

= e−z(1−Q)



Percolation Transition

Q = e−z(1−Q)

1 − S = e−zS

S = 1 − e−zS



Closed Form

1) S* = 0

z = 12) S* = 0 ,

S = 1 − e−zS



Numerical Solution

S = 1 − e−zS

z = 0.98
z = 1

z = 1.008

z = 1.01



Numerical Solution 

S = 1 − e−zS



Random graphs do not display clustering

⟨C⟩rand = p

⟨C⟩rand = p =
⟨k⟩rand

N − 1

p

Clustering



Clustering 

… but real-world graphs do!

⟨C⟩rand =
⟨k⟩

N − 1
=

103

109
≈ 0.00000001

0.01 ≤ ⟨C⟩Facebook ≤ 0.5



Activity: Random Networks

https://tinyurl.com/3p9fxnsc

3. Can you predict the 
average degree before 
running the simulation?

4. Is it possible to obtain 
a node with a very large 
number of links? 



Man-made objects can be geometrically complex and do not resemble 
ideal forms such as points, lines, planes, cubes, circles of spheres. 

Growth: City Networks



Evolution of Technology



1973 1980 1985

1990 1995 2004

Growth: Patent Networks



(Price, 1965) & (Price, 1976)
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Growth: Preferential Attachment

Π(k) ∼ kβ P(k) = Uk−γ
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Cumulative degree distribution
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Activity: Preferential Attachment

5. How many 
nodes are “hubs”?

7. Does some low k node ever 
become a hub? How often? 

6. How many 
nodes have only a 
few links?

How history and reinforcement influence network architecture?

https://tinyurl.com/3ttchcep



Network Robustness: Internet

Paul Baran presents his work at a RAND Alumni Association event on July 25, 2009



Network Robustness: Scale-Free vs Random

“Error and attack tolerance of complex networks” 
R. Albert, H. Jeong & L-A Barabási 
Nature 406 (2000) 378-382



8. If you wanted 
to shut down the 
network, how 
many nodes 
would you have 
to take out? 

Activity: Robustness & Directed Attacks

https://tinyurl.com/3jkubj8j

9. Are collapses quick or gradual? 

10. Can you predict the breaking 
point? Is this network fragile or 
robust? Why? 



Network Efficiency: 
Hubs, Connectors & Paths



- Path Length

- Power of Matrices

- Geodesic Path

- Diameter

- Components

- Global Efficiency v1

v2

d1,2 =2 

Path Length

Definitions



Click on a pair of nodes 
to see the shortest path 
connecting them. 

https://tinyurl.com/587wsvwj

Activity: Shortest Paths

Click the ‘Failure’ button 
repeatedly to remove 
nodes at random.

Describe the dynamical 
evolution of the shortest path 
under random failures.  



Length of a path is the number of edges traversed along a path (not the nodes). 
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Network Distance



Power Matrices
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Number of paths of given length

Number of paths of length 2: N(2)
ij =

N

∑
k=1

AikAkj = [A2]ij

Number of paths of length 3:

Number of paths of length r :

N(
ij3) =

N

∑
k=1

N

∑
l=1

AikAklAlj = [A3]ij

N(r)
ij = [Ar]ij

Network Distance



A geodesic path (or shortest path) is a path through a network 
between two vertices such that no shortest path exists. 

The shortest path distance is the length of the shortest path, 
i.e., the smallest value of r such that: 

[Ar]ij
> 0

In practice, there are more efficient ways of calculating 
shortest distances in a graph (e.g., Dijkstra's Algorithm).  

Edsger W. Dijkstra

(1930-2002)


Turing Award (1972)

Network Distance
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dij ≥ 0
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Components
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Block diagonal form

Network Distance



BostonOmaha

Is your Network Large or Small?

18 out 96 received

⟨d⟩ = 5.9

Network Distance

Stanley Milgram (1967)



Brain of a worm (C. Elegans)

Electronic Circuits

Why Many Networks are Small and yet Clustered?

Power grids

Linguistic Networks

Between Order and Randomness



z = <k> = 2

1 2 4 8

0 1 2 3

Average Path Length

Nd = zd

log(N) = d log(z)

⟨d⟩ ≈
log(N)
log(z)



11. Which 
shortcuts 
reduce the 
average 
distance ? 

Activity: Small Worlds

12. After completing 10 
experiments, plot the (shortcuts, 
mean path length) curve. Can the 
distinction between good and poor 
networks be made?

https://tinyurl.com/yv5u4kpu

https://tinyurl.com/yv5u4kpu
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Small-World Lattice

By defining a few long-distance links, diffusion may be accelerated

Diffusion Processes



Structure-Function Relationship



Can you control an 
epidemic?

Vaccination Game

Take action to prevent 
the spread of illness in 
various urban settings. 
After a small amount of 
vaccinations have been 
distributed, the epidemic 
continues to spread, and 
the players must act 
quickly to isolate 
everybody who could be 
sick. 

NOTE: This game was 
designed in 2017.

https://tinyurl.com/c42yx3pc



Modularity 
Evolution & Tinkering



Adjacency Matrix Network

u3

u2

u1

u4

u5

u6

u1 u2 u3 u4 u5 u6

u1
u2

u3

u4

u5

u6

Modularity quantifies the degree to which nodes are grouped 
together and dependent on one another.

Definition

Newman & Girvan Phys Rev E 69, 026113 (2004)

How species coexist in a 
competitive world? 



(1) Divide up the network

(2) Calculate the modularity value (Q)

(3) Repeat until a solution is optimised

Community Detection



(1) Divide up the network



(2) Calculate the modularity value (Q)

Q =
X

[ ]Observed fraction 
of links in group

Expected fraction 
of links in group-

For each of  
the modules



Q =
NmX

s=1

"
ls
L

�
✓
ds
2L

◆2
#

Number of Modules
Number of links between 

nodes in module ’s'

Number of links  
in the network 

Sum of degrees 
of nodes in module ’s'

Girvan and Newman PNAS 99:7821 (2002)

Taking square to 
obtain link probability

(2) Calculate the modularity value (Q)



Q = 0 Q = 1Q = − 1

ANTI-MODULAR MODULARRANDOM

Q =
X

s=1Nm

"
ls
L

�
✓
ds
2L

◆2
#



Example (1/2)

s2s1
Q =

NmX

s=1

"
ls
L

�
✓
ds
2L

◆2
#

Qs1 =
1

7
�

✓
4

14

◆2

= 0.06

Qs2 =
4

7
�

✓
10

14

◆2

= 0.06

Q = Qs1 +Qs2 = 0.12



s2s1

Example (2/2)

Qs1 =
3

7
�

✓
7

14

◆2

= 0.18

Qs2 = Qs1 = 0.18

Q = Qs1 +Qs2 = 0.36 > 0.12

Q =
NmX

s=1

"
ls
L

�
✓
ds
2L

◆2
#



Random Modular Networks

RMG(p, q)

p

q



14. Which network has more 
linkages, RMG (p,q) or RMG 
(q,p)? Which one is more 
modular? Why? 

Activity: Random Modular Networks

https://tinyurl.com/4a7syzuk

13. Can you 
use this model 
to generate a 
random graph?
How? 

https://tinyurl.com/4a7syzuk


Understanding the contributions of multiples forces in the evolutionary origins of 
modularity

Most hypotheses of the 
emergence of modularity 
assume indirect selection for 
evolvability, but a direct 
selection pressure to reduce 
the cost of links causes the 
emergence of modular 
networks.

It has been suggested that networks evolved under “modularly 
varying goals” must be modular.  However, it is unclear how 
many biological environments change in a modular way and if 
they change frequently enough.

Evolution of Modularity



Diversity from Structural RulesDiversity from Structural Rules



Valverde and Solé, Physical Review E (2005)

Solé and Valverde, Trends  Eco Evol (2006)

Stephen Jay Gould

Richard Lewontin

Tinkered Evolution of Networks



Morphospaces



Degeneracy & Determinism



Determinism

Determinism = log2(N) − ⟨H (Wout
i )⟩

Hoel, E., Albantakis, L., & Tononi, G. (2013)



Degeneracy

Degeneracy = log2(N) − H (⟨Win
i ⟩)

Hoel, E., Albantakis, L., & Tononi, G. (2013)



Effective Information

EI = Degeneracy - Determinism

Hoel, E., Albantakis, L., & Tononi, G. (2013)

+⟨H (Wout
i )⟩−H (⟨Win

i ⟩)EI = log2(N) −log2(N)



Effective Information

Hoel, E., Albantakis, L., & Tononi, G. (2013)

EI = −H (⟨Win
i ⟩) ⟨H (Wout

i )⟩+

EI = Degeneracy - Determinism



Interactive Morphospace Exploration

16) Can you adjust 
model parameters to 
cross the diagonal? Why 
/ Why not?

https://tinyurl.com/5cvjz42b

15) Explore how different 
networks are positioned 
within this morphospace. 
Rank them according to 
filled morphospace.

https://tinyurl.com/5cvjz42b


Summary

Networks are the language of complexity.

Many real systems are close to the percolation transition.

Structure evidences multiple evolutionary mechanisms.

Complexity emerges from simplicity. 

Summary

Tradeoffs between robustness & efficiency. 



“The future cannot be predicted, but 
futures can be invented”

–Dennis Gabor (Hungarian physicist)


