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A Visual Language for Biology

Can we find a good notation for biological complexity?
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S u bS tl tu te fO r th O u g h t Figure 3: Main classes of information represented by the SBOL 2.x standard, and their relationships. Green boxes are “top

level” classes, while the other classes are in support of these classes. Solid arrows indicates ownership, whereas a dashed
arrow indicates that one class refers to an object of another class.

quoted by Woodger (1937) The Axiomatic Method in Biology, pp. 18 Madsen et al. (2019) Synthetic Biology Open Language (SBOL) v 2.3



A Visual Language for Technology

Valverde et al. (2002) Scale-Free Networks from Optimal Design
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Do life and non-life share the same basic architecture?
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Basic Properties
Robustness and Fragility

Hubs, Connectors and Paths
Evolution of Networks

Community Structure



Network Representation

Adjacency Matrix
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Network Representation

Edge List
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https://svalver.github.io/course

Introduction to Networks

42589 - Biologla de
Sistemas Computacional

VNIVERSITAT

DN

B, QV/\ LENCIA Master Universitario en Bioinformatica

This website contains a collection of online activities that are part of the curriculum for the Universitat de Valencia
course "Biologia de Sistemas Computacional”. These lessons can be used in combination Netlab, an online

application designed to assist students to develop evolutionary models of complex networks.

Sergi Valverde, a CSIC tenured scientist from the Institute of Evolutionary Biology (CSIC
Online activities
The following online activities require a WebGL compliant web browser.

e Defining a network (link):Input a simple network by hand and adjust its layout parameters.
e A Random Graph (link): When determining the relevance of network patterns, random graphs are utilized as
null models. The Erdos-Renyi model generates random graphs with a fixed connection probability (p) and a

5|C-UPF), teaches the course.

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2016, 7, 127-132 doi: 10.1111/2041-210X.12458

APPLICATION

BiMat:aMATLAB package to facilitate the analysis of
bipartite networks



https://svalver.github.io/course

Networks: The Visual Language of Complexity

Blai Vidiella, Salva Duran-Nebreda and Sergi Valverde

Abstract Understanding the origins of complexity is a fundamental challenge with
implications for biological and technological systems. Network theory emerges as
a powerful tool to model complex systems. Networks are an intuitive framework to
represent inter-dependencies among many system components, facilitating the study
of both local and global properties. However, it is unclear whether we can define a uni-
versal theoretical framework for evolving networks. While basic growth mechanisms,
like preferential attachment, recapitulate common properties such as the power-law
degree distribution, they fall short in capturing other system-specific properties. Tin-
kering, on the other hand, has shown to be very successful in generating modular
or nested structures ‘for-free’, highlighting the role of internal, non-adaptive mecha-
nisms in the evolution of complexity. Different network extensions, like hypergraphs,
have been recently developed to integrate exogenous factors in evolutionary models,
as pairwise interactions are insufficient to capture environmentally-mediated species
associations. As we confront global societal and climatic challenges, the study of
network and hypergraphs provides valuable insights, emphasizing the importance of
scientific exploration in understanding and managing complexity.

Key words: Networks, Evolution;, Hypergraphs; Complex Systems; Tinkering

2410.16158v1 [cond-mat.dis-nn] 21 Oct 20

arxXiv

Blai Vidiella > : !Institute of Evolutionary Biology, CSIC-UPF, Pg. Barceloneta 37, Barcelona
08003, Spain. 2Theoretical and Experimental Ecology Station, CNRS, Moulis, France.

e-mail: blai.vidiella-rocamora@sete.cnrs. fr

Salva Duran-Nebreda ' : !Institute of Evolutionary Biology, CSIC-UPF, Pg. Barceloneta 37,
Barcelona 08003, Spain. e-mail: salva.duran@ibe.upf-csic.es

Sergi Valverde : Institute of Evolutionary Biology, CSIC-UPF, Pg. Barceloneta 37, Barcelona
08003, Spain. 3Europea.n Centre for Living Technology (ECLT), Ca’ Bottacin, Dorsoduro 3911,
30123 - Venice, Italy. e-mail: s.valverde@csic.es

1

Contributed chapter to ”Nonlinear Dynamics for Biological Systems”, M. Stich, J. Carballido-Landeira (Eds), Springer, Switzerland, 2024
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https://arxiv.org/abs/2410.16158

Activity: Defining Networks

https://tinyurl.com/24e3n5tf

Network Editor by @svalver 2018 1. Explain hOW many
bytes are needed to

store this network

s Put here using the adjacepcy
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In-degree and Out-degree

Dominance hierarchies
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Local Clustering
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Random Networks :
Robustness & Fragility



Percolation
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How does connectivity
affects behaviour?
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Kesten, Harry (1982), Percolation theory for mathematicians, Birkhauser


http://en.wikipedia.org/wiki/Harry_Kesten

Disconnected Phase
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Power outage after Hurricane Katrina hit the Gulf Coast
This image was take Aug 30 and shows the widespread power
outages across the Gulf Coast after Hurricane Katrina ravaged the
area. U.S. Air Force Image.




Connected Phase

P 0,498

Power grid before the Hurricane Katrina hit the Gulf Coast
This image was taken Sept. 17,2003 and shows the city lights in the
Gulf Coast clearly visible. U.S. Air Force Image.




Theorem (Kesten, 1980)

In Bernoulli percolation
with parameter p on the
infinite square grid,

If p <=1/2, the
P(infinite cluster) = 0O,

and

if p>1/2 then
P(infinite cluster) = 1




Randomness

The simplest model of a network : everything is boring

INTRODUCTION TO

(J R/A\pl—{h

ALAN FRIEZE
MICHAL KARONSKI

Paul Erdds (1913-1996)



Simulating Random Graphs

A static world without geography

N = number of nodes

p = probability of connecting a pair of nodes


http://svalver.github.io/netlab/exp7/exp7.html

create (4)

J




for each (a)




for each (a)
for each (b)




random-float (1) < p




add edge(a, b)




for each (a)
for each (b)




for each (a)
for each (b)







Average degree




Average degree




Degree Distribution




Degree Distribution




Degree Distribution

Discrete Binomial

3¢ P(k) = (0]%(;1 1—)p)N o
.. 3:;;‘




Degree Distribution

Poisson Distribution



Percolation Transition




Percolation Transition




Percolation Transition




Percolation Transition

0 = 1 — S = Probability that the vertex i does
not belong to the giant connected component

Disconnected Connected




Percolation Transition

Qk — Probability that none of its k neighbours
belongs to the giant connected component

Disconnected Connected




Percolation Transition

0=(Q)= ) PkQ*

k>0

Disconnected Connected




Percolation Transition

0= Pk e

k>0




Percolation Transition




Closed Form

S=1—-¢%

1) S* =0
2)S*=0,z=1



Numerical Solution

S=1—-¢%

0.0200°~ { = 1.01 import matplotlib.pyplot as plt
import numpy as np
z = 1.008 plt.figure(figsize=(8,6), dpi = 160)
0.0150 - X = range(500)
for z in [0.98, 1, 1.008, 1.01]:
y = []
Uy 0.0100 - S =0.01
for 1 in X:
S=1-np.exp( -z x S)

0.0175 A

0.0125 -

0.0075 A

0.0050 - y.append (S)

plt.plot ( x, y, label = "z=%0.03f"% z)
0-0025~ K= plt.xlabel ("Time", fontsize= 18)
00000 - 7z =0.98 plt.ylabel ("S", fontsize = 18)

0 100 00 00 o .y plt.legend(fontsize = 18)
Time plt.show()



Numerical Solution

S=1—-¢%

import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(8,6), dpi = 160)
S _values = []
z values = [float(1i)/40.0 for i in range(100)]
for z in z_values:
S = 0.01
0.4 - for j in range(500):
S=1-np.exp( -z xS )
S_values.append (S)
0.2 - plt.xlabel ("z", fontsize= 18)
plt.ylabel ("S", fontsize = 18)
plt.plot (z_values, S_values)
0.0 - plt.show()

0.0 0.5 1.0 1.5 2.0 2.5

0.8 -

0.6 -




Clustering

Random graphs do not display clustering

<C>mnd — P

O\ & <k> rand

C = =
< >rand P N — 1




Clustering

... but real-world graphs do!

0.01 S <C>Facebook < 0.5 n

<C>mnd — ﬂ 103

N1 — Too ~ (.00000001



Activity: Random Networks

https://tinyurl.com/3p9fxnsc

O OO0 Network Experiment

Erdos-Reny1 Graph - by @svalver 2018

Resekt speed Fallure ¥ Context

MNodes: 250
Links: SB8S
¥ Layout
L, 0S00E0
1. 0p00e0
-@, BE 3500
0, 4800680
0, Sa006a0
[, 3EU0ED
¥ Experiment
250

0, 015080

max(Degres): 12

Frackion GCC!

|IIIIIII —
a7
GCC

Distance
Theta
Charge
Strengkh
Gravi by

Frickion

S1zZe

Prob Link

Pik]

3. Can you predict the
average degree before
running the simulation?

4. Is it possible to obtain
a node with a very large
number of lInks?



Man-made objects can be geometrically complex and do not resemble
Ideal forms such as points, lines, planes, cubes, circles of spheres.




of Technology
George Basalla
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Growth: Patent Networks
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Growth: Preferential Attachment

2 A

s 0,60 .

S :

Q +

§ +
0,06 E

0,00
1,00 260 16,00 75

(Price, 1965) & (Price, 1976)

Number of Citations



Cumulative degree distribution

P, = ) Pk
k'=k



Activity: Preferential Attachment

How history and reinforcement influence network architecture?

https://tinyurl.com/3ttchcep

SHON® Network Experiment

Preferential Attachment - by @svalver 2Z016

Resek l g Speed Failure ¥ Conkexkt 5. l OW l]’

Modes: 73

Links: 72 111 J)
g nodes are "hubs”?
0, 03a0a0 Distance

1, D0EQED Theta

— e 6. How many
Zee  nodes have only a
—pee few links?

¥ Experiment

/. Does some low k node ever
become a hub? How often?




Network Robustnhess: Internet

s TRIBUTED
{9

269, Decentrolized o7 Distributed Networks

works connecting the
i cluster of nodes

Paul Baran presents his work at a RAND Alumni Association event on July 25, 2009



27 July 2000 l International weekly journal of science

“Error and attack tolerance of complex networks”
R. Albert, H. Jeong & L-A Barabasi
Nature 406 (2000) 378-382




Activity: Robustness & Directed Attacks

https://tinyurl.com/3jkubij8]

Network Experiment

Mekbtwork Fragmenktation - by @svalwer ZO1A

e 8. If you wanted

R to shut down the
network, how
many nodes
would you have
to take out?

9. Are collapses quick or gradual?

10. Can you predict the breaking
point? Is this network fragile or
robust? Why?




Network Efficiency:
Hubs, Connectors & Paths



Definitions

Path Length

- Path Length 3
- Power of Matrices
- Geodesic Path

- Diameter

- Components

- Global Efficiency




Activity: Shortest Paths

https://tinyurl.com/587wsvw]

ONONO,

Network Experiment

‘Metwork Distance - by @svalver 2016

Resek Failure
Lefk-click ko seleck tEhe firskt node.

¥ Conktext
Modes: 106
Links: 258
Undireckted Graph
¥ Experiment

Diskbance: ©

Global Efficiency:

@, 190

Click on a pair of nodes
to see the shortest path
connecting them.

Click the ‘Failure’ button
repeatedly to remove
nodes at random.

Describe the dynamical
evolution of the shortest path
under random failures.




Network Distance

Length of a path is the number of edges traversed along a path (not the nodes).




Network Distance

Power Matrices

a 2
A= AA
2
b Nab
d O O 1 O O0+«1 O 1. 10 1
O 0 1 1 O 0+« 1 1 1 2 1 1

AN
®
1
|



Network Distance

Number of paths of given length

Number of paths of length 2: N (2) = Z AlkAk] [AZ]U
k=1

N N

Number of paths of length 3: N(3) Z Z A, kAszzj [AB]U
k=1 =1

Number of paths of length r: 1\71:5-?) — [Ar]ij



Network Distance

A geodesic path (or shortest path) is a path through a network
between two vertices such that no shortest path exists.

The shortest path distance is the length of the shortest path,
l.e., the smallest value of r such that:

Al >0
)
In practice, there are more efficient ways of calculating
shortest distances in a graph (e.g., Dijkstra's Algorithm).

Edsger W. Dijkstra
(1930-2002)
Turing Award (1972)






[s your Network Large or Small?
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Why Many Networks are Small and yet Clustered?

1)

= S

) D e 1 Lo e @t L g eama T L 2
&~ 4. :

Linguistic Networks Electronic Circuits

=

Brain of a worm (C. Elegans)

Power grids




Average Path Length

Nd=Zd

log(N) = dlog(z)

3.0 -

N log(N) *

— log(x)

" log(z) o

0.5 -

(d)

0.0 -
6 2(l)0 460 660 860 10'00
] 2 4 3




Activity: Small Worlds

O OO

https://tinyurl.com/yv5udkpu

Small World - by @svalver 2016

Resek :

Left-cliclk Eo

L 2

[

seleck the source endpoint.

Network Experiment

Speed Failures

¥ Context

Modes: 256

Links: 960

Undirected Graph

¥ Layout

B, B400006 Distance
1. 000000 Thekta
-0, DOZEEE Charge
@, 2000606 strengkh
B, 3000606 Gravi by
B, 200000 Frickion

¥ Experiment
Shortcuks: 1
fverage Path Lengkh: 9. 85

11. Which
shortcuts
reduce the
average
distance ?

12. After completing 10
experiments, plot the (shortcuts,
mean path length) curve. Can the
distinction between good and poor
networks be made?


https://tinyurl.com/yv5u4kpu

htip://complex.upfes

By defining a few long-distance links, diffusion may be accelerated

Small-World

100%

| attice







Vaccination Game

https://tinyurl.com/cd42yx3pc

Vaccination by Sergi Valverde (@svalver) 2017

Can you control an
epidemic?

Take action to prevent
the spread of illness In
various urban settings.
After a small amount of
vaccinations have been
distributed, the epidemic
continues to spread, and
the players must act
quickly to isolate

everybody who could be NOTE: This game was
sick designed in 2017.




Modularity
Evolution & Tinkering



Definition

Modularity quantifies the degree to which nodes are grouped
together and dependent on one another.

U4 U2 U3 U4 Us U
Us

How species coexist in a Network Adjacency Matrix
competitive world?

Newman & Girvan Phys Rev E 69, 026113 (2004)



Community Detection

(1) Divide up the network
(2) Calculate the modularity value (Q)

(3) Repeat until a solution is optimised



(1) Divide up the network




Calculate the modularity value

Observed fraction _ Expected fraction
of links In group of links In group




Calculate the modularity value

Number of Modules Ta.kin.g S t(.).
Number of links between  Sum of degrees  ©OPtain link probability

nodes in module’s' of nodes in module s’

\4

“‘--II.....

. [
** S




ANTI-MODULAR RANDOM MODULAR
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Example (2/2)




Random Modular Networks




Activity: Random Modular Networks

s://tinvurl.com/4a7svzuk

Network Modularity - by @svalver 2016 13
6 . Can you

Resek Speed Faillure
¥ Contexkt

[} Nodes: 100

use this model

Undirected Graph

¥ Layout

sl [0 generate a

1. 000000 Theta
-0. 004000 Charge

= random graph?

0, 200000 Gravity

0. 300000 Friction How7
¥ Experiment ol

100 - + Size

< - + Modules

0,.600000 P{(intra)

el 74, \W/hich network has more

Fraction GCC: 1.00

linkages, RMG (p,q) or RMG
(,p)? Which one is more
modaular? Why?



https://tinyurl.com/4a7syzuk

Evolution of Modularity

Understanding the contributions of multiples forces in the evolutionary origins of
modularity

The evolutionary origins of modularity Spontaneous emergence of
modularity in
cellular networks

Spontaneous evolution of modularity

Jeff Clune™21, Jean-Baptiste Mouret®>* and Hod Lipson’

and network motifs

Nadav Kashtan and Uri Alon*

“Comell University, Ithaca, NY, USA

2,
University of Wyoming, Laramie, WY, USA . 21,2,% . 1,2
3ISIR, Université Pierre et Marie Curie-Paris 6, (NRS UMR 7222, Paris, France Rlcard V. SOle and Sergl Valverde

b epoch 1: epoch 2:

QXXORY)AND&XORWD (XXOR Y) OR (ZXOR W)
a  Fixed goal evolution X Yz w X Y z W
X Y z w
(XXOR ¥) AND (Z XOR W) Most hypotheses of the
- e emergence of modularity
e assume indirect selection for
evolvability, but a direct
out 0 selection pressure to reduce
ouT .
. € - R - the cost of links causes the
d Modularly varying "
goals evolution - emergence of modular
| a networks.
80 B0 - ot
. . ouT ouT
main problem evolutionary process non-hierarchical, further evolution in a new environment

non-modular networks

""""""""

It has been suggested that networks evolved under “modularly
varying goals” must be modular. However, it is unclear how
many biological environments change in a modular way and if
they change frequently enough.

hierarchical, functionally
modular networks




Diversity from Structural Rules

(a) :
DUP (2) ADD(2'-2) |
2
— -
2 2O O:2
DUP (1) DUP (1) DUP (2")
Y - Y

vV b Kb

TRENDS in Ecology & Evolution




Tinkered Evolution of Networks

Modes: 2

Links: 1

¥ Experiment

220 1 Ern

1 B B Deqgree
B Constant Legree

Pk

maxiDegree): 1

Fraction GCC: 1. @0

Richard Lewontin
Evolving complexity: how tinkering

Sh?[ DES kce”SI software and ecological Valverde and Solé, Physical Review E (2005)
NETWOrKS

Solé and Valverde, Trends Eco Evol (2006)

Ricard Solé"23* and Sergi Valverde*?
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Determinism

Determinism = log,(N) — <H (me)>
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Hoel, E., Albantakis, L., & Tononi, G. (2013)



Degeneracy

Degeneracy = log,(N) — H ((Wiin> )
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Effective Information

Ll = Degeneracy - Determinism

BT = logy(V) —H ((W)") ) ~logsN) + (H (o)

Hoel, E., Albantakis, L., & Tononi, G. (2013)



Effective Information

Ll = Degeneracy - Determinism

El=—H ((W") ) + (H (W)

Hoel, E., Albantakis, L., & Tononi, G. (2013)



Interactive Morphospace Exploration

https://tinvurl.com/5cvijz42b

15) Explore how different
networks are positioned
within this morphospace.
Rank them according to
filled morphospace.

16) Can you adjust
model parameters to
cross the diagonal? Why
/ Why not?



https://tinyurl.com/5cvjz42b

Summary

Networks are the language of complexity.

Many real systems are close to the percolation transition.

Tradeoffs between robustness & efficiency.

Structure evidences multiple evolutionary mechanisms.

Complexity emerges from simplicity:.
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“The future cannot be predicted, but
futures can be invented”

—Dennis Gabor (Hungarian physicist)
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