

What is Complexity?

Complex systems involve emergence: the presence of higher-level phenomena that cannot be reduced to the analysis of lower-level entities.

Complexity requires interactions among different units. New interactions are key to innovations.

Evolution of Complexity

Adaptations and Innovations taking place at Multiple Scales

New qualitative behaviours, structures and patterns naturally emerge when crossing phase transition points

Universality

Do life and technology share the same basic architecture?

A Network Language for Biology

Can we find a good notation for biological systems?

Bertrand Russell
"A good notation has a subtletly and suggestiveness which at times make it seem almost like a live teacher ... and a perfect notation would be a substitute for thought"

Angel Goñi

A Network Language for Technology

Valverde et al. (2002) Scale-Free Networks from Optimal Design

Alan Kay

Hierarchical Small-Worlds in Software Architecture

Basic Properties

Robustness and Fragility

Hubs, Connectors and Paths
Evolution of Networks

Community Structure

Network Representation

Adjacency Matrix

Network Representation

Edge List

https://svalver.github.io/course

Introduction to Networks

42589 - Biologia de Sistemas Computacional

VNIVERSITAT [E ƠVALE NCIA Máster Universitario en Bioinformática

This website contains a collection of online activities that are part of the curriculum for the Universitat de Valencia course "Biologia de Sistemas Computacional". These lessons can be used in combination Netlab, an online application designed to assist students to develop evolutionary models of complex networks.

Sergi Valverde, a CSIC tenured scientist from the Institute of Evolutionary Biology (CSIC-UPF), teaches the course

Online activities

The following online activities require a WebGL compliant web browser.

- Defining a network (link):Input a simple network by hand and adjust its layout parameters.
- A Random Graph (link): When determining the relevance of network patterns, random graphs are utilized as null models. The Erdös-Renyi model generates random graphs with a fixed connection probability (p) and a

Pajek

Methods in Ecology and Evolution

C

 Methods in Ecology and Evolution 2016, 7, 127-132 doi: 10.1111/2041-210x. 12458APPLICATION
BiMat: a MATLAB package to facilitate the analysis of bipartite networks

Activity: Defining Networks

https://tinyurl.com/24e3n5tf

1. Explain how many bytes are needed to store this network using the adjacency list and the matrix representations.
2. Consider an alternative method for representing networks. Explain.

Degree

In-degree and Out-degree

Number of Edges

$$
m=\sum_{i=1}^{N} k_{i}^{\text {in }}=\sum_{i=1}^{N} k_{i}^{\text {out }}=\sum_{i, j} A_{i, j}
$$

Local Clustering

$$
\begin{aligned}
c_{i} & =\frac{e_{i}}{\binom{k_{i}}{2}} \\
& =\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
\end{aligned}
$$

$C_{i}=1 / 3$
$\mathrm{C}_{\mathrm{i}}=1$

Motifs

Motifs

Random Networks : Robustness © Fragility

Percolation

How does connectivity affects behaviour?

Disconnected Phase

Power outage after Hurricane Katrina hit the Gulf Coast
This image was take Aug 30 and shows the widespread power outages across the Gulf Coast after Hurricane Katrina ravaged the area. U.S. Air Force Image.

Connected Phase

Power grid before the Hurricane Katrina hit the Gulf Coast
This image was taken Sept. 17,2003 and shows the city lights in the Gulf Coast clearly visible. U.S. Air Force Image.

Theorem (Kesten, 1980)
In Bernoulli percolation with parameter p on the infinite square grid,
if $p<=1 / 2$, the
$P($ infinite cluster $)=0$,
and
if $p>1 / 2$ then
$P($ infinite cluster $)=1$

Randomness

The simplest model of a network : everything is boring

Paul Erdös (1913-1996)

Simulating Random Graphs

A static world without geography
$\boldsymbol{N}=$ number of nodes
$\boldsymbol{p}=$ probability of connecting a pair of nodes

create (4)

for each (a)

for each (a)
for each (b)

random-float (1) < p

add_edge (a, b)

for each (a)

for each (b)

for each (a)

for each (b)

Average degree

$$
L=p\binom{N}{2}=\frac{p N(N-1)}{2}
$$

$\langle k\rangle_{\text {rand }}=\frac{2 L}{N}=(N-1) p$
$N-1$

Degree Distribution

Degree Distribution

Discrete Binomial

Poisson Distribution

$$
P(k)=e^{-z}\left(\frac{z^{k}}{k!}\right)
$$

Percolation Transition

Percolation Transition

Percolation Transition

Percolation Transition

$Q=1-S=$ Probability that the vertex i does not belong to the giant connected component

Disconnected

Connected

Percolation Transition

$Q^{k}=$ Probability that none of its k neighbours belongs to the giant connected component

Disconnected

Connected

Percolation Transition

$$
Q \equiv\langle Q\rangle=\sum_{k \geq 0} P(k) Q^{k}
$$

Disconnected
Connected

Percolation Transition

$$
\begin{aligned}
Q & =\sum_{k \geq 0} P(k) Q^{k} \quad \overbrace{}^{e^{z Q}} \underbrace{\frac{z^{k}}{k}} \\
& =e^{-z} \sum_{k \geq 0}^{k!} Q^{k}=e^{-z} \sum_{k \geq 0} \frac{(z Q)^{k}}{k!}=e^{-z(1-Q)}
\end{aligned}
$$

Percolation Transition

$$
\begin{aligned}
Q & =e^{-z(1-Q)} \\
1-S & =e^{-z S} \\
S & =1-e^{-z S}
\end{aligned}
$$

Closed Form

$$
\begin{aligned}
& S=1-e^{-z S} \\
& S^{*}=0 \\
& S^{*}=0, z=1
\end{aligned}
$$

$S=1-e^{-z S}$


```
import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(8,6), dpi = 160)
x = range(500)
for z in [0.98, 1, 1.008, 1.01]:
    y = []
    S = 0.01
    for i in x:
        S = 1 - np.exp( -z * S)
        y.append (S)
    plt.plot ( x, y, label = "z=%0.03f"% z)
plt.xlabel ("Time", fontsize= 18)
plt.ylabel ("S", fontsize = 18)
plt.legend(fontsize = 18)
plt.show()
```


Numerical Solution

$S=1-e^{-z S}$

import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(8,6), dpi = 160)
S_values = []
z_values $=$ [float(i)/40.0 for i in range(100)]
for z in z_values:
$S=0.01$
for j in range(500):
$\mathrm{S}=1$ - np.exp(-z*S)
S_values.append (S)
plt.xlabel ("z", fontsize= 18)
plt.ylabel ("S", fontsize = 18)
plt.plot (z_values, S_values)
plt.show()

Clustering

Random graphs do not display clustering

$$
\begin{aligned}
& \langle C\rangle_{\text {rand }}=p \\
& \langle C\rangle_{\text {rand }}=p=\frac{\langle k\rangle_{\text {rand }}}{N-1}
\end{aligned}
$$

Clustering

... but real-world graphs do!

$$
0.01 \leq\langle C\rangle_{\text {Facebook }} \leq 0.5
$$

$$
\langle C\rangle_{\text {rand }}=\frac{\langle k\rangle}{N-1}=\frac{10^{3}}{10^{9}} \approx 0.00000001
$$

Activity: Random Networks

https://tinyurl.com/3p9fxnsc

3. Can you predict the average degree before running the simulation?
4. Is it possible to obtain a node with a very large number of links?

Growth: City Networks

Man-made objects can be geometrically complex and do not resemble ideal forms such as points, lines, planes, cubes, circles of spheres.

Evolution of Technology

Growth: Patent Networks

1994

Growth: Preferential Attachment

$\Pi(k) \sim k^{\beta} \longrightarrow P(k)=U k^{-\gamma}$

(Price, I965) \& (Price, I976)

Derek de Solla Price (1922-1983)

Cumulative degree distribution

$$
\begin{aligned}
& P_{>k}=\sum_{k^{\prime}=k}^{\infty} P\left(k^{\prime}\right) \\
& P_{>k}=U \sum_{j=k}^{\infty} j^{-\gamma} \approx U \int_{k}^{\infty} j^{-\gamma} d j=\frac{U}{\gamma-1} k^{-(\gamma-1)}
\end{aligned}
$$

Activity: Preferential Attachment

How history and reinforcement influence network architecture?

https://tinyurl.com/3ttchcep

5. How many nodes are "hubs"?
6. How many nodes have only a few links?

7. Does some low k node ever become a hub? How often?

Network Robustness

Obesity Mice that eat more but weigh less
Ocean anoxic events Not all at sea
Cell signalling Fringe sweetens Notch
"Error and attack tolerance of complex networks" R. Albert, H. Jeong \& L-A Barabási Nature 406 (2000) 378-382

Activity: Directed Attacks

https://tinyurl.com/3jkubj8j

8. If you wanted to shut down the network, how many nodes would you have to take out?

9. Are collapses quick or gradual?
10. Can you predict the breaking point? Is this network fragile or robust? Why?

Origins of Internet

Paul Baran presents his work at a RAND Alumni Association event on July 25, 2009

Network Efficiency: Hubs, Connectors \& Paths

Definitions

Path Length

- Path Length
- Power of Matrices
- Geodesic Path
- Diameter
- Components
- Global Efficiency

Activity: Shortest Paths

https://tinyurl.com/587wsvwj

Metwork Distance - by gsvalver 2016

Reset Failure

Left-cilick to select the first node.

Context Nodes: 106 Undirected
Undirected Graph

- Experiment

Distance: 0
Global Efficiency: 0.190

Click on a pair of nodes to see the shortest path connecting them.

Click the 'Failure' button repeatedly to remove nodes at random.

Describe the dynamical evolution of the shortest path under random failures.

Network Distance

Length of a path is the number of edges traversed along a path (not the nodes).

$$
A=\left(\begin{array}{llll|l}
0 & 0 & 1 & 0 & a \\
0 & 0 & 1 & 1 & b \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
a & b & c & d
\end{array}\right) d
$$

Network Distance

$$
\begin{aligned}
& \stackrel{b}{\rho} \quad \text { Power Matrices } \\
& A^{2}=A A
\end{aligned}
$$

Network Distance

$$
\begin{aligned}
& \stackrel{b}{\rho} \quad \text { Power Matrices } \\
& A^{2}=A A
\end{aligned}
$$

Network Distance

Number of paths of given length

$\begin{array}{ll}\text { Number of paths of length 2: } & N_{i j}^{(2)}=\sum_{k=1}^{N} A_{i k} A_{k j}=\left[A^{2}\right]_{i j} \\ \text { Number of paths of length 3: } & N_{i j}^{(3)}=\sum_{k=1}^{N} \sum_{l=1}^{N} A_{i k} A_{k l} A_{l j}=\left[A^{3}\right]_{i j}\end{array}$

Number of paths of length $r: \quad N_{i j}^{(r)}=\left[A^{r}\right]_{i j}$

Network Distance

A geodesic path (or shortest path) is a path through a network between two vertices such that no shortest path exists.

The shortest path distance is the length of the shortest path, i.e., the smallest value of \boldsymbol{r} such that:

In practice, there are more efficient ways of calculating shortest distances in a graph (e.g., Dijkstra's Algorithm).

Edsger W. Dijkstra (1930-2002)
Turing Award (1972)

Network Distance

Network Distance

Is your Network Large or Small?

Between Order and Randomness

Average Path Length

Activity: Small Worlds

https://tinyurl.com/587wsvwj

11. Which shortcuts reduce the average distance?

12. After completing 10 experiments, plot the (shortcuts, mean path length) curve. Can the distinction between good and poor networks be made?

Diffusion Processes

By defining a few long-distance links, diffusion may be accelerated

2:9: : : : $\mathrm{CO}+\mathrm{CO}+5-5+4$ $000-10-10$ $0000-0,0-0$ $040-0,0-0-0$ $0000-100-0$ $000000-0$ $0,0-0,0-0$ $00-0-0-0-0,0$ $00-0-0$
 $000-0-0-0-0$ 0 OOPO $0-5+0$
http://complex.upfes

Structure-Function Relationship

Modularity
 Evolution © Tinkering

Definition

Modularity quantifies the degree to which nodes are grouped together and dependent on one another.

How species coexist in a competitive world?

(1) Divide up the network
(2) Calculate the modularity value (Q)
(3) Repeat until a solution is optimised
(1) Divide up the network

(2) Calculate the modularity value (Q)

For each of
the modules

(2) Calculate the modularity value (Q)

Girvan and Newman PNAS 99:7821 (2002)
$Q=-1$
$Q=0$
$Q=1$

ANTI-MODULAR

RANDOM

MODULAR

$$
Q=\sum_{s=1_{m}^{N}}\left[\frac{l_{s}}{L}-\left(\frac{d_{s}}{2 L}\right)^{2}\right]
$$

Example (1/2)

$$
\begin{aligned}
& Q=\sum_{s=1}^{N_{m}}\left[\frac{l_{s}}{L}-\left(\frac{d_{s}}{2 L}\right)^{2}\right] \\
& Q_{s_{1}}=\frac{1}{7}-\left(\frac{4}{14}\right)^{2}=0.06 \\
& Q_{s_{2}}=\frac{4}{7}-\left(\frac{10}{14}\right)^{2}=0.06 \\
& Q=Q_{s_{1}}+Q_{s_{2}}=0.12
\end{aligned}
$$

Example (2/2)

$$
\begin{aligned}
& Q=\sum_{s=1}^{N_{m}}\left[\frac{l_{s}}{L}-\left(\frac{d_{s}}{2 L}\right)^{2}\right] \\
& Q_{s_{1}}=\frac{3}{7}-\left(\frac{7}{14}\right)^{2}=0.18 \\
& Q_{s_{2}}=Q_{s_{1}}=0.18 \\
& Q=Q_{s_{1}}+Q_{s_{2}}=0.36>0.12
\end{aligned}
$$

Random Modular Networks

Activity: Random Modular Networks

https://tinyurl.com/4a7syzuk

13. Can you use this model to generate a random graph? How?

14. Which network has more linkages, RMG (p, q) or RMG (q, p) ? Which one is more modular? Why?

Evolution of Modularity

Understanding the contributions of multiples forces in the evolutionary origins of modularity

Spontaneous evolution of modularity and network motifs

Nadav Kashtan and Uri Alon*

It has been suggested that networks evolved under "modularly varying goals" must be modular. However, it is unclear how many biological environments change in a modular way and if they change frequently enough.

The evolutionary origins of modularity
Jeff Clune ${ }^{1,2, t,}$ Jean-Baptiste Mouret ${ }^{3,+}$ and Hod Lipson ${ }^{1}$
${ }^{1}$ Comenl Uninesity, Uthac, NY, USA

Most hypotheses of the emergence of modularity assume indirect selection for evolvability, but a direct selection pressure to reduce the cost of links causes the emergence of modular networks.

Spontaneous emergence of modularity in cellular networks

Ricard V. Sole ${ }^{1,2, *}$ and Sergi Valverde ${ }^{1,2}$

Diversity from Structural Rules

(a)

Tinkered Evolution of Networks

Stephen Jay Gould

Richard Lewontin

Evolving complexity: how tinkering shapes cells, software and ecological networks

Ricard Solé ${ }^{1,2,3,4}$ and Sergi Valverde ${ }^{4,5}$

Valverde and Solé, Physical Review E (2005)
Solé and Valverde, Trends Eco Evol (2006)

Vaccination Game

https://tinyurl.com/c42yx3pc

Can you control an epidemic?

Take action to prevent the spread of illness in various urban settings. After a small amount of vaccinations have been distributed, the epidemic continues to spread, and the players must act quickly to isolate everybody who could be sick.

NOTE: This game was designed in 2017.

Summary

Networks are the language of complexity.

Many real systems are close to the percolation transition.

Networks evidence multiple evolutionary mechanisms.

A good model explains multi-scale network features.

Complexity emerges from simplicity.

"The future cannot be predicted, but futures can be invented"

